Faculty Opinions recommendation of Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins.

Author(s):  
Clive Lloyd
2006 ◽  
Vol 18 (12) ◽  
pp. 3502-3518 ◽  
Author(s):  
Daniël Van Damme ◽  
Silvie Coutuer ◽  
Riet De Rycke ◽  
Francois-Yves Bouget ◽  
Dirk Inzé ◽  
...  

Author(s):  
G.P.A. Vigers ◽  
R.A. Crowther ◽  
B.M.F. Pearse

Clathrin forms the polyhedral cage of coated vesicles, which mediate the transfer of selected membrane components within eukaryotic cells. Clathrin cages and coated vesicles have been extensively studied by electron microscopy of negatively stained preparations and shadowed specimens. From these studies the gross morphology of the outer part of the polyhedral coat has been established and some features of the packing of clathrin trimers into the coat have also been described. However these previous studies have not revealed any internal details about the position of the terminal domain of the clathrin heavy chain, the location of the 100kd-50kd accessory coat proteins or the interactions of the coat with the enclosed membrane.


1990 ◽  
Vol 79 (1) ◽  
pp. 194-196
Author(s):  
Anna Alwen ◽  
Norbert Eller ◽  
Monika Kastler ◽  
Rosa Maria Benito Moreno ◽  
Erwin Heberle-Bors

2013 ◽  
Author(s):  
Maria M Malagon ◽  
Yoana Rabanal-Ruiz ◽  
Rocio Guzman-Ruiz ◽  
Alberto Diaz-Ruiz ◽  
Andres Travez ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 438
Author(s):  
Jean Harb ◽  
Nicolas Mennesson ◽  
Cassandra Lepetit ◽  
Maeva Fourny ◽  
Margaux Louvois ◽  
...  

Chronic stimulation by infectious pathogens or self-antigen glucosylsphingosine (GlcSph) can lead to monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Novel assays such as the multiplex infectious antigen microarray (MIAA) and GlcSph assays, permit identification of targets for >60% purified monoclonal immunoglobulins (Igs). Searching for additional targets, we selected 28 purified monoclonal Igs whose antigen was not represented on the MIAA and GlcSph assays; their specificity of recognition was then analyzed using microarrays consisting of 3760 B-cell epitopes from 196 pathogens. The peptide sequences PALTAVETG and PALTAAETG of the VP1 coat proteins of human poliovirus 1/3 and coxsackievirus B1/B3, respectively, were specifically recognized by 6/28 monoclonal Igs. Re-analysis of patient cohorts showed that purified monoclonal Igs from 10/155 MGUS/SM (6.5%) and 3/147 MM (2.0%) bound to the PALTAVETG or PALTAAETG epitopes. Altogether, PALTAV/AETG-initiated MGUS are not rare and few seem to evolve toward myeloma.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
William L. Macken ◽  
Annie Godwin ◽  
Gabrielle Wheway ◽  
Karen Stals ◽  
Liliya Nazlamova ◽  
...  

Abstract Background Coat protein complex 1 (COPI) is integral in the sorting and retrograde trafficking of proteins and lipids from the Golgi apparatus to the endoplasmic reticulum (ER). In recent years, coat proteins have been implicated in human diseases known collectively as “coatopathies”. Methods Whole exome or genome sequencing of two families with a neuro-developmental syndrome, variable microcephaly and cataracts revealed biallelic variants in COPB1, which encodes the beta-subunit of COPI (β-COP). To investigate Family 1’s splice donor site variant, we undertook patient blood RNA studies and CRISPR/Cas9 modelling of this variant in a homologous region of the Xenopus tropicalis genome. To investigate Family 2’s missense variant, we studied cellular phenotypes of human retinal epithelium and embryonic kidney cell lines transfected with a COPB1 expression vector into which we had introduced Family 2’s mutation. Results We present a new recessive coatopathy typified by severe developmental delay and cataracts and variable microcephaly. A homozygous splice donor site variant in Family 1 results in two aberrant transcripts, one of which causes skipping of exon 8 in COPB1 pre-mRNA, and a 36 amino acid in-frame deletion, resulting in the loss of a motif at a small interaction interface between β-COP and β’-COP. Xenopus tropicalis animals with a homologous mutation, introduced by CRISPR/Cas9 genome editing, recapitulate features of the human syndrome including microcephaly and cataracts. In vitro modelling of the COPB1 c.1651T>G p.Phe551Val variant in Family 2 identifies defective Golgi to ER recycling of this mutant β-COP, with the mutant protein being retarded in the Golgi. Conclusions This adds to the growing body of evidence that COPI subunits are essential in brain development and human health and underlines the utility of exome and genome sequencing coupled with Xenopus tropicalis CRISPR/Cas modelling for the identification and characterisation of novel rare disease genes.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3678
Author(s):  
Olga V. Andreeva ◽  
Bulat F. Garifullin ◽  
Vladimir V. Zarubaev ◽  
Alexander V. Slita ◽  
Iana L. Yesaulkova ◽  
...  

A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.


ACS Nano ◽  
2020 ◽  
Author(s):  
Jing Dai ◽  
Gavin J. Knott ◽  
Wen Fu ◽  
Tiffany W. Lin ◽  
Ariel L. Furst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document