Faculty Opinions recommendation of A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system.

Author(s):  
Etienne Joly
1998 ◽  
Vol 187 (4) ◽  
pp. 537-546 ◽  
Author(s):  
Benjamin M. Segal ◽  
Bonnie K. Dwyer ◽  
Ethan M. Shevach

Cells of the innate immune system secrete cytokines early in immune responses that guide maturing T helper (Th) cells along appropriate lineages. This study investigates the role of cytokine networks, bridging the innate and acquired immune systems, in the pathogenesis of an organ specific autoimmune disease. Experimental allergic encephalomyelitis (EAE), a demyelinating disease of the central nervous system, is widely used as an animal model for multiple sclerosis. We demonstrate that interleukin (IL)-12 is essential for the generation of the autoreactive Th1 cells that induce EAE, both in the presence and absence of interferon γ. The disease-promoting effects of IL-12 are antagonized by IL-10 produced by an antigen nonspecific CD4+ T cell which, in turn, is regulated by the endogenous production of IL-12. This unique immunoregulatory circuit appears to play a critical role in controlling Th cell differentiation and provides a mechanism by which microbial triggers of the innate immune system can modulate autoimmune disease.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Todd V. Brennan ◽  
Keri E. Lunsford ◽  
Paul C. Kuo

Studies of the immune mechanisms of allograft rejection have predominantly focused on the adaptive immune system that includes T cells and B cells. Recent investigations into the innate immune system, which recognizes foreign antigens through more evolutionarily primitive pathways, have demonstrated a critical role of the innate immune system in the regulation of the adaptive immune system. Innate immunity has been extensively studied in its role as the host's first-line defense against microbial pathogens; however, it is becoming increasingly recognized for its ability to also recognize host-derived molecules that result from tissue damage. The capacity of endogenous damage signals acting through the innate immune system to lower immune thresholds and promote immune recognition and rejection of transplant grafts is only beginning to be appreciated. An improved understanding of these pathways may reveal novel therapeutic targets to decrease graft alloreactivity and increase graft longevity.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Savvas Ioannou ◽  
Michael Voulgarelis

Toll-like receptors (TLRs) belong to a class of molecules known as pattern recognition receptors, and they are part of the innate immune system, although they modulate mechanisms that impact the development of adaptive immune responses. Several studies have shown that TLRs, and their intracellular signalling components, constitute an important cellular pathway mediating the inflammatory process. Moreover, their critical role in the regulation of tissue injury and wound healing process as well as in the regulation of apoptosis is well established. However, interest in the role of these receptors in cancer development and progression has been increasing over the last years. TLRs are likely candidates to mediate effects of the innate immune system within the tumour microenvironment. A rapidly expanding area of research regarding the expression and function of TLRs in cancer cells and its association with chemoresistance and tumourigenesis, and TLR-based therapy as potential immunotherapy in cancer treatment is taking place over the last years.


Dermatology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Mindy D. Szeto ◽  
Jalal Maghfour ◽  
Torunn E. Sivesind ◽  
Jarett Anderson ◽  
Jadesola T. Olayinka ◽  
...  

<b><i>Background:</i></b> The innate immune system is recognized as an essential aspect of COVID-19 pathogenesis. Toll-like receptors (TLRs) are important in inducing antiviral response, triggering downstream production of interferons (IFNs). Certain loss-of-function variants in TLR7 are associated with increased COVID-19 disease severity, and imiquimod (ImiQ) is known to have immunomodulating effects as an agonist of TLR7. Given that topical imiquimod (topImiQ) is indicated for various dermatologic conditions, it is necessary for dermatologists to understand the interplay between innate immunity mechanisms and the potential role of ImiQ in COVID-19, with a particular focus on TLR7. <b><i>Summary:</i></b> Our objective was to survey recent peer-reviewed scientific literature in the PubMed database, examine relevant evidence, and elucidate the relationships between IFNs, TLR7, the innate immune system, and topImiQ in the context of COVID-19. Despite limited studies on this topic, current evidence supports the critical role of TLRs in mounting a strong immune response against COVID-19. Of particular interest to dermatologists, topImiQ can result in systemic upregulation of the immune system via activation of TLR7. <b><i>Key Message:</i></b> Given the role of TLR7 in the systemic activation of the immune system, ImiQ, as a ligand of the TLR7 receptor, may have potential therapeutic benefit as a topical immunomodulatory treatment for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document