Faculty Opinions recommendation of Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls.

Author(s):  
Jerry Buccafusco
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Nicolas Pelisch ◽  
Jose Rosas Almanza ◽  
Kyle E. Stehlik ◽  
Brandy V. Aperi ◽  
Antje Kroner

Abstract Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI.


2020 ◽  
Author(s):  
Nicolas Pelisch ◽  
Jose Rosas Almanza ◽  
Kyle Edward Stehlik ◽  
Brandy V Aperi ◽  
Antje Kroner

Abstract Background: Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (Macrophage inflammatory protein 1- α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods: A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3-/- mice.Results: The expression of CCL3 and its receptors is increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3 −/− mice. CCL3 −/− mice showed mild but significant improvement of locomotor recovery and a smaller lesion size compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3 .Conclusion: We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that the absence of CCL3 can contribute to reduced tissue damage and better functional recovery during secondary injury after SCI.


2020 ◽  
Vol 9 (4) ◽  
pp. 1221 ◽  
Author(s):  
Jacek M. Kwiecien ◽  
Liqiang Zhang ◽  
Jordan R. Yaron ◽  
Lauren N. Schutz ◽  
Christian J. Kwiecien-Delaney ◽  
...  

Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.


2006 ◽  
Vol 23 (5) ◽  
pp. 660-673 ◽  
Author(s):  
Jason R. Potas ◽  
Yu Zheng ◽  
Charbel Moussa ◽  
Melinda Venn ◽  
Catherine A. Gorrie ◽  
...  

Author(s):  
Johannie Audet ◽  
Charly G. Lecomte

Tonic or phasic electrical epidural stimulation of the lumbosacral region of the spinal cord facilitates locomotion and standing in a variety of preclinical models with severe spinal cord injury. However, the mechanisms of epidural electrical stimulation that facilitate sensorimotor functions remain largely unknown. This review aims to address how epidural electrical stimulation interacts with spinal sensorimotor circuits and discusses the limitations that currently restrict the clinical implementation of this promising therapeutic approach.


2009 ◽  
Vol 26 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Haruo Kanno ◽  
Hiroshi Ozawa ◽  
Yoshihiro Dohi ◽  
Akira Sekiguchi ◽  
Kazuhiko Igarashi ◽  
...  

2014 ◽  
Vol 1549 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nait Taleb Ali ◽  
M.P. Morel ◽  
M. Doulazmi ◽  
S. Scotto-Lomassese ◽  
P. Gaspar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document