Faculty Opinions recommendation of Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.

Author(s):  
Ruedi Aebersold
2007 ◽  
Vol 104 (25) ◽  
pp. 10364-10369 ◽  
Author(s):  
M. B. Smolka ◽  
C. P. Albuquerque ◽  
S.-h. Chen ◽  
H. Zhou

2006 ◽  
Vol 17 (1) ◽  
pp. 539-548 ◽  
Author(s):  
Tania M. Roberts ◽  
Michael S. Kobor ◽  
Suzanne A. Bastin-Shanower ◽  
Miki Ii ◽  
Sonja A. Horte ◽  
...  

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107Δ, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


2003 ◽  
Vol 23 (4) ◽  
pp. 1441-1452 ◽  
Author(s):  
Vladimir I. Bashkirov ◽  
Elena V. Bashkirova ◽  
Edwin Haghnazari ◽  
Wolf-Dietrich Heyer

ABSTRACT The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G2/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G2/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.


2008 ◽  
Vol 28 (15) ◽  
pp. 4782-4793 ◽  
Author(s):  
Fabio Puddu ◽  
Magda Granata ◽  
Lisa Di Nola ◽  
Alessia Balestrini ◽  
Gabriele Piergiovanni ◽  
...  

ABSTRACT Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G1 phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Δ dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.


Open Biology ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. 140008 ◽  
Author(s):  
Thomas Turner ◽  
Thomas Caspari

Peregrine Laziosi (1265–1345), an Italian priest, became the patron saint of cancer patients when the tumour in his left leg miraculously disappeared after he developed a fever. Elevated body temperature can cause tumours to regress and sensitizes cancer cells to agents that break DNA. Why hyperthermia blocks the repair of broken chromosomes by changing the way that the DNA damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) are activated is an unanswered question. This review discusses the current knowledge of how heat affects the ATR–Chk1 and ATM–Chk2 kinase networks, and provides a possible explanation of why homeothermal organisms such as humans still possess this ancient heat response.


2004 ◽  
Vol 15 (9) ◽  
pp. 4051-4063 ◽  
Author(s):  
Kaila L. Schollaert ◽  
Julie M. Poisson ◽  
Jennifer S. Searle ◽  
Jennifer A. Schwanekamp ◽  
Craig R. Tomlinson ◽  
...  

Replication blocks and DNA damage incurred during S phase activate the S-phase and intra-S-phase checkpoint responses, respectively, regulated by the Atrp and Chk1p checkpoint kinases in metazoans. In Saccharomyces cerevisiae, these checkpoints are regulated by the Atrp homologue Mec1p and the kinase Rad53p. A conserved role of these checkpoints is to block mitotic progression until DNA replication and repair are completed. In S. cerevisiae, these checkpoints include a transcriptional response regulated by the kinase Dun1p; however, dun1Δ cells are proficient for the S-phase-checkpoint-induced anaphase block. Yeast Chk1p kinase regulates the metaphase-to-anaphase transition in the DNA-damage checkpoint pathway via securin (Pds1p) phosphorylation. However, like Dun1p, yeast Chk1p is not required for the S-phase-checkpoint-induced anaphase block. Here we report that Chk1p has a role in the intra-S-phase checkpoint activated when yeast cells replicate their DNA in the presence of low concentrations of hydroxyurea (HU). Chk1p was modified and Pds1p was transiently phosphorylated in this response. Cells lacking Dun1p were dependent on Chk1p for survival in HU, and chk1Δ dun1Δ cells were defective in the recovery from replication interference caused by transient HU exposure. These studies establish a relationship between the S-phase and DNA-damage checkpoint pathways in S. cerevisiae and suggest that at least in some genetic backgrounds, the Chk1p/securin pathway is required for the recovery from stalled or collapsed replication forks.


2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Huilin Zhou ◽  
Marcus B Smolka ◽  
Claudio Albuquerque ◽  
Sheng‐hong Chen

2000 ◽  
Vol 14 (3) ◽  
pp. 278-288 ◽  
Author(s):  
Nabil H. Chehab ◽  
Asra Malikzay ◽  
Michael Appel ◽  
Thanos D. Halazonetis

Chk2/hcds1, the human homolog of theSaccharomyces cerevisiae RAD53/SPK1 andSchizosaccharomyces pombe cds1 DNA damage checkpoint genes, encodes a protein kinase that is post-translationally modified after DNA damage. Like its yeast homologs, the Chk2/hCds1 protein phosphorylates Cdc25C in vitro, suggesting that it arrests cells in G2 in response to DNA damage. We expressed Chk2/hCds1 in human cells and analyzed their cell cycle profile. Wild-type, but not catalytically inactive, Chk2/hCds1 led to G1 arrest after DNA damage. The arrest was inhibited by cotransfection of a dominant-negative p53 mutant, indicating that Chk2/hCds1 acted upstream of p53. In vitro, Chk2/hCds1 phosphorylated p53 on Ser-20 and dissociated preformed complexes of p53 with Mdm2, a protein that targets p53 for degradation. In vivo, ectopic expression of wild-type Chk2/hCds1 led to increased p53 stabilization after DNA damage, whereas expression of a dominant-negative Chk2/hCds1 mutant abrogated both phosphorylation of p53 on Ser-20 and p53 stabilization. Thus, in response to DNA damage, Chk2/hCds1 stabilizes the p53 tumor suppressor protein leading to cell cycle arrest in G1.


Sign in / Sign up

Export Citation Format

Share Document