Faculty Opinions recommendation of The Thermotoga maritima Trk potassium transporter--from frameshift to function.

Author(s):  
Ian Booth
2009 ◽  
Vol 191 (7) ◽  
pp. 2276-2284 ◽  
Author(s):  
Hope A. Johnson ◽  
Eric Hampton ◽  
Scott A. Lesley

ABSTRACT The gene for the Thermotoga maritima Trk potassium transporter component TrkA was originally thought to be a frameshift mutation and not to encode a functional protein. However, expression from this gene yielded a complex consisting of two distinct proteins designated TM1088A and -B. Genetic complementation of Escherichia coli mutants unable to transport potassium suggests that TM1088A/B is part of a functional Trk potassium transporter complex with the membrane protein TM1089. The protein structure for TM1088A shows a characteristic Rossmann fold indicating an NAD+ binding site and has structural similarity to potassium channel-related proteins. Ligand binding studies indicated that ATP, ADP, and AMP stabilized TM1088A to a much greater degree than NADH and NAD, consistent with the crystal structure of TM1088A, which contains a bound AMP natural ligand at the characteristic GXGXXG nucleotide binding site. Mutation of single and all glycines at this nucleotide binding site eliminated in vitro protein stabilization by the ligand, yet these mutated proteins could still functionally complement the E. coli potassium uptake mutants. We predict that this new two-subunit class of TrkA proteins is present in a number of organisms. A further subclass of the predicted two-subunit TrkA proteins lack an identifiable membrane-spanning subunit of the Trk K+ transporter. This class, as exemplified by Mycobacterium tuberculosis, did not complement E. coli potassium transport with the native E. coli TrkH; thus, it may require a novel TrkH-like protein for activity or provide an alternate function in vivo.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2021 ◽  
Author(s):  
María Sanz‐Fernández ◽  
Alejandro Rodríguez‐González ◽  
Luisa M. Sandalio ◽  
María C. Romero‐Puertas

2006 ◽  
Vol 400 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Eric Di Luccio ◽  
Robert A. Elling ◽  
David K. Wilson

The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2′-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.


Sign in / Sign up

Export Citation Format

Share Document