scholarly journals Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies

2006 ◽  
Vol 400 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Eric Di Luccio ◽  
Robert A. Elling ◽  
David K. Wilson

The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2′-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.

1999 ◽  
Vol 181 (2) ◽  
pp. 389-395 ◽  
Author(s):  
George F. Parker ◽  
Timothy P. Higgins ◽  
Timothy Hawkes ◽  
Robert L. Robson

ABSTRACT In Escherichia coli, the phn operon encodes proteins responsible for the uptake and breakdown of phosphonates. The C-P (carbon-phosphorus) lyase enzyme encoded by this operon which catalyzes the cleavage of C-P bonds in phosphonates has been recalcitrant to biochemical characterization. To advance the understanding of this enzyme, we have cloned DNA fromRhizobium (Sinorhizobium) melilotithat contains homologues of the E. coli phnG, -H, -I, -J, and -Kgenes. We demonstrated by insertional mutagenesis that the operon from which this DNA is derived encodes the R. meliloti C-P lyase. Furthermore, the phenotype of this phn mutant shows that the C-P lyase has a broad substrate specificity and that the organism has another enzyme that degrades aminoethylphosphonate. A comparison of the R. meliloti and E. coli phngenes and their predicted products gave new information about C-P lyase. The putative R. meliloti PhnG, PhnH, and PhnK proteins were overexpressed and used to make polyclonal antibodies. Proteins of the correct molecular weight that react with these antibodies are expressed by R. meliloti grown with phosphonates as sole phosphorus sources. This is the first in vivo demonstration of the existence of these hitherto hypothetical Phn proteins.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 385-398 ◽  
Author(s):  
Jana Hejnova ◽  
Ulrich Dobrindt ◽  
Radka Nemcova ◽  
Christophe Rusniok ◽  
Alojz Bomba ◽  
...  

Colonization by the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) has proved to be safe and efficient in the prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants in Czech paediatric clinics over the past three decades. In searching for traits contributing to this beneficial effect related to the gut colonization capacity of the strain, the authors have analysed its genome by DNA–DNA hybridization to E. coli K-12 (MG1655) genomic DNA arrays and to ‘Pathoarrays’, as well as by multiplex PCR, bacterial artificial chromosome (BAC) library cloning and shotgun sequencing. Four hundred and ten E. coli K-12 ORFs were absent from A0 34/86, while 72 out of 456 genes associated with pathogenicity islands of E. coli and Shigella were also detected in E. coli A0 34/86. Furthermore, extraintestinal pathogenic E. coli-related genes involved in iron uptake and adhesion were detected by multiplex PCR, and genes encoding the HlyA and cytotoxic necrotizing factor toxins, together with 21 genes of the uropathogenic E. coli 536 pathogenicity island II, were identified by analysis of 2304 shotgun and 1344 BAC clone sequences of A0 34/86 DNA. Multiple sequence comparisons identified 31 kb of DNA specific for E. coli A0 34/86; some of the genes carried by this DNA may prove to be implicated in the colonization capacity of the strain, enabling it to outcompete pathogens. Among 100 examined BAC clones roughly covering the A0 34/86 genome, one reproducibly conferred on the laboratory strain DH10B an enhanced capacity to persist in the intestine of newborn piglets. Sequencing revealed that this BAC clone carried gene clusters encoding gluconate and mannonate metabolism, adhesion (fim), invasion (ibe) and restriction/modification functions. Hence, the genome of this clinically safe and highly efficient colonizer strain appears to harbour many ‘virulence-associated’ genes. These results highlight the thin line between bacterial ‘virulence’ and ‘fitness' or ‘colonization’ factors, and question the definition of enterobacterial virulence factors.


2017 ◽  
Vol 200 (6) ◽  
Author(s):  
Hardik M. Zatakia ◽  
Timofey D. Arapov ◽  
Veronika M. Meier ◽  
Birgit E. Scharf

ABSTRACTThe chemosensory system inSinorhizobium melilotihas several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA inS. meliloti. Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell inS. meliloti. The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen inBacillus subtilis(23:1) and about 10 times higher than that inEscherichia coli(3.4:1). Different fromE. coli, the high-abundance receptors inS. melilotiare lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptionallacZfusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system inS. melilotideviates significantly from the established enterobacterial paradigm but shares some similarities withB. subtilis.IMPORTANCEThe symbiotic soil bacteriumSinorhizobium melilotiis of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better understanding of the role of chemotaxis in these processes, detailed knowledge on the regulation and composition of the chemosensory machinery is essential. Here, we show that chemoreceptor gene expression inS. melilotiis controlled through the main transcriptional regulators of motility. Chemoreceptor abundance is much lower inS. melilotithan inEscherichia coliandBacillus subtilis. Moreover, the chemoreceptor-to-kinase CheA ratio is different from that ofE. colibut similar to that ofB. subtilis.


1989 ◽  
Vol 35 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Lawrence C. Shimmin ◽  
C. Hunter Newton ◽  
Celia Ramirez ◽  
Janet Yee ◽  
Willa Lee Downing ◽  
...  

Archaebacterial and eucaryotic cytoplasmic ribosomes contain proteins equivalent to the L11, L1, L10, and L12 proteins of the eubacterium Escherichia coli. In E. coli the genes encoding these ribosomal proteins are clustered, cotranscribed, and autogenously regulated at the level of mRNA translation. Genomic restriction fragments encoding the L11e, L1e, L10e, and L12e (equivalent) proteins from two divergent archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10e and L12e proteins from the eucaryote Saccharomyces cerevisiae have been cloned, sequenced, and analyzed. In the archaebacteria, as in eubacteria, the four genes are clustered and the L11e, L1e, L 10e, and L12e order is maintained. The transcription pattern of the H. cutirubrum cluster is different from the E. coli pattern and the flanking genes on either side of the tetragenic clusters in E. coli, H. cutirubrum, and Sulfolobus solfataricus are all unrelated to each other. In the eucaryote Saccharomyces cerevisiae there is a single L10e gene and four separate L12e genes that are designated L12eIA, L12eIB, L12eIIA, and L12eIIB. These five genes are not closely linked and each is transcribed as a monocistronic mRNA; the L10e, L12eIA, L12eIB, and the L12eIIA genes are contiguous and uninterrupted, whereas the L12eIIB gene is interrupted by a 301 nucleotide long intron located between codons 38 and 39.Key words: archaebacteria, ribosome, Halobacterium, Sulfolobus.


2000 ◽  
Vol 66 (1) ◽  
pp. 392-400 ◽  
Author(s):  
Kevin P. O'Connell ◽  
Michael F. Thomashow

ABSTRACT A homolog of the major eubacterial cold shock gene cspAwas identified in Sinorhizobium meliloti RM1021 byluxAB reporter transposon mutagenesis. Here we further characterize the organization and regulation of this locus. DNA sequence analysis indicated that the locus includes three open reading frames (ORFs) encoding homologs corresponding to CspA, a novel 10.6-kDa polypeptide designated ORF2, and a homolog of the Escherichia coli ribosomal protein S21. Transcription analysis indicated that this locus produced two different-sized cspA-hybridizing transcripts upon cold shock, a 400-nucleotide (nt) RNA encodingcspA alone and a 1,000-nt transcript encodingcspA-ORF2-rpsU. The sizes of the transcripts agreed with the location of the transcription start site determined by primer extension and the locations of two putative transcriptional terminators. The promoter of the cspA-ORF2-rpsU locus had −10 and −35 elements similar to the E. coliς70 consensus promoter and, like the cspAlocus of E. coli, included an AT-rich region upstream of the −35 hexamer. The promoter of the S. meliloti cspAlocus was found to impart cold shock-induced mRNA accumulation. In addition, the 5′-untranslated region (5′ UTR) was found to increase the fold induction of cspA transcripts after cold shock and depressed the level of luxAB mRNA prior to cold shock, another feature similar to cspA regulation in E. coli. No “cold box” was identified upstream of the S. meliloti cspA gene, however, and there was no other obvious sequence identity between the S. meliloti 5′ UTR and that of E. coli. DNA hybridization analysis indicated that outside the cspA-ORF2-rpsU cold shock locus there are several additional cspA-like genes and a secondrpsU homolog.


2003 ◽  
Vol 69 (10) ◽  
pp. 5957-5967 ◽  
Author(s):  
Yilei Qian ◽  
L. P. Yomano ◽  
J. F. Preston ◽  
H. C. Aldrich ◽  
L. O. Ingram

ABSTRACT Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na+/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of xylosidase.


1998 ◽  
Vol 180 (16) ◽  
pp. 4160-4165 ◽  
Author(s):  
Klaas Martinus Pos ◽  
Peter Dimroth ◽  
Michael Bott

ABSTRACT Under anoxic conditions in the presence of an oxidizable cosubstrate such as glucose or glycerol, Escherichia coliconverts citrate to acetate and succinate. Two enzymes are specifically required for the fermentation of the tricarboxylic acid, i.e., a citrate uptake system and citrate lyase. Here we report that the open reading frame (designated citT) located at 13.90 min on theE. coli chromosome between rna and the citrate lyase genes encodes a citrate carrier. E. colitransformed with a plasmid expressing citT was capable of aerobic growth on citrate, which provides convincing evidence for a function of CitT as a citrate carrier. Transport studies with cell suspensions of the transformed strain indicated that CitT catalyzes a homologous exchange of citrate or a heterologous exchange against succinate, fumarate, or tartrate. Since succinate is the end product of citrate fermentation in E. coli, it is likely that CitT functions in vivo as a citrate/succinate antiporter. Analysis of the primary sequence showed that CitT (487 amino acids, 53.1 kDa) is a highly hydrophobic protein with 12 putative transmembrane helices. Sequence comparisons revealed that CitT is related to the 2-oxoglutarate/malate translocator (SODiT1 gene product) from spinach chloroplasts and five bacterial gene products, none of which has yet been functionally characterized. It is suggested that the E. coli CitT protein is a member of a novel family of eubacterial transporters involved in the transport of di- and tricarboxylic acids.


1998 ◽  
Vol 180 (12) ◽  
pp. 3237-3240 ◽  
Author(s):  
Raffaele Cannio ◽  
Patrizia Contursi ◽  
Mosè Rossi ◽  
Simonetta Bartolucci

ABSTRACT A plasmid able to transform and to be stably maintained both inSulfolobus solfataricus and in Escherichia coliwas constructed by insertion into an E. coli plasmid of the autonomously replicating sequence of the virus particle SSV1 and a suitable mutant of the hph (hygromycin phosphotransferase) gene as the transformation marker. The vector suffered no rearrangement and/or chromosome integration, and its copy number inSulfolobus was increased by exposure of the cells to mitomycin C.


1998 ◽  
Vol 180 (13) ◽  
pp. 3448-3452 ◽  
Author(s):  
Claudia Ruppert ◽  
Sönke Wimmers ◽  
Thorsten Lemker ◽  
Volker Müller

ABSTRACT Three additional ATPase genes, clustered in the orderahaH, ahaI, and ahaK, were found upstream of the previously characterized genes ahaECFABDGcoding for the archaeal A1Ao ATPase fromMethanosarcina mazei. ahaH, the first gene in the cluster, is preceded by a conserved promoter sequence. Northern blot analysis revealed that the clusters ahaHIK andahaECFABDG are transcribed as one message. AhaH is a hydrophilic polypeptide and is similar to peptides of previously unassigned function encoded by genes preceding postulated ATPase genes in Methanobacterium thermoautotrophicum andMethanococcus jannaschii. AhaI has a two-domain structure with a hydrophilic domain of 39 kDa and a hydrophobic domain with seven predicted transmembrane α helices. It is similar to the 100-kDa polypeptide of V1Vo ATPases and is therefore suggested to participate in proton transport. AhaK is a hydrophobic polypeptide with two predicted transmembrane α helices and, on the basis of sequence comparisons and immunological studies, is identified as the proteolipid, a polypeptide which is essential for proton translocation. However, it is only one-half and one-third the size of the proteolipids from M. thermoautotrophicum and M. jannaschii, respectively. ahaK is expressed inEscherichia coli, and it is incorporated into the cytoplasmic membrane despite the different chemical natures of lipids from archaea and bacteria. This is the first report on the expression and incorporation into E. coli lipids of a membrane integral enzyme from a methanogens, which will facilitate analysis of the structure and function of the membrane domain of the methanoarchaeal ATPase.


1995 ◽  
Vol 307 (2) ◽  
pp. 377-381 ◽  
Author(s):  
K Tsuji ◽  
N G Copeland ◽  
N A Jenkins ◽  
M Obinata

The MER5 [now called the Aop1 (antioxidant protein 1) gene] was cloned as a transiently expressed gene of murine erythroleukaemia (MEL) cell differentiation and its antisense expression inhibited differentiation of MEL cells. We found that the Aop1 gene shows significant nucleotide sequence similarity to the gene coding for the C22 subunit of Salmonella typhimurium alkylhydroperoxide reductase, which is also found in other bacteria, suggesting it functions as an antioxidant protein. Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide. The human and mouse Aop1 genes are highly conserved, and they mapped to the regions syntenic between mouse and human chromosomes. Sequence comparisons with recently cloned mammalian Aop1 homologues suggest that these genes consist of a family that is responsible for regulation of cellular proliferation, differentiation and antioxidant functions.


Sign in / Sign up

Export Citation Format

Share Document