Faculty Opinions recommendation of Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

Author(s):  
Gary Klinefelter
2011 ◽  
Vol 85 (6) ◽  
pp. 1161-1166 ◽  
Author(s):  
Erin L. Stanley ◽  
Daniel S. Johnston ◽  
Jinjiang Fan ◽  
Vassilios Papadopoulos ◽  
Haolin Chen ◽  
...  

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2001 ◽  
Vol 168 (1) ◽  
pp. 95-105 ◽  
Author(s):  
C Genissel ◽  
J Levallet ◽  
S Carreau

Regulation of aromatase gene expression in purified rat Leydig cells has not yet been investigated. Therefore, using a highly specific quantitative RT-PCR method, we have measured the amount of cytochrome P450 aromatase (P450arom) mRNA and aromatase activity in mature rat Leydig cells submitted to various treatments during 24 h. Estradiol production was enhanced in a dose-related manner in the presence of testosterone, the maximum (28% increase) being obtained with 200 ng/ml. Related to the P450arom mRNA levels, a decrease was observed in the presence of low concentrations (50 and 100 ng/ml) of testosterone, then a 20% increase of the amount of transcripts was recorded for the higher concentrations (200-500 ng/ml). The same result was obtained in the presence of 5alpha-dihydrotestosterone (an androgen resistant to aromatase activity). The addition of ovine LH (oLH; 0.1-50 ng/ml) to the Leydig cell culture medium induced a dose-related augmentation of estradiol output up to 10 ng/ml oLH, although a decrease was observed with 50 ng/ml when compared with maximal values. mRNA levels slightly decreased in the presence of low concentrations (0.1-1 ng/ml) of oLH, an effect that was abolished by the addition of testosterone; mRNA levels were increased by oLH (5-10 ng/ml) 35 and 75% respectively in the absence and presence of testosterone (when compared with Leydig cells incubated without treatment). With 50 ng/ml oLH, a large augmentation (twofold) of the P450arom mRNA level either without or with testosterone was observed. Dibutyryl cyclic AMP (1 mM) mimicked the effect of oLH. The half-life of the P450arom mRNAs was twofold increased in the presence of testosterone and oLH when compared with the half-life in the absence of treatment (5.8+/-0.6 h). Taken together, our data have demonstrated that, in freshly isolated Leydig cells from mature rat testes, the regulation of aromatase expression and enzymatic activity is under LH (through cyclic AMP) and steroid control; moreover seminiferous tubule-secreted factor(s) are also involved. Therefore, rat Leydig cell aromatase is controlled at both transcriptional and post-transcriptional steps by endocrine and/or locally produced modulators.


1987 ◽  
Vol 114 (3) ◽  
pp. 459-467 ◽  
Author(s):  
V. Papadopoulos ◽  
P. Kamtchouing ◽  
M. A. Drosdowsky ◽  
M. T. Hochereau de Reviers ◽  
S. Carreau

ABSTRACT Production of testosterone and oestradiol-17β by Leydig cells from adult rats was stimulated by LH or dibutyryl cyclic AMP (10 and 2·5-fold respectively). The addition of spent medium from normal, hemicastrated or γ-irradiated rat seminiferous tubule cultures, as well as from Sertoli cell cultures, to purified Leydig cells further enhanced both basal (44 and 53% for testosterone and oestradiol-17β respectively) and LH-stimulated (56 and 18%) steroid output. Simultaneously, a decrease (20–30%) in intracellular cyclic AMP levels was observed. This stimulating factor (or factors) secreted by the Sertoli cells is different from LHRH, is of proteinic nature and has a molecular weight ranging between 10 000 and 50 000; its synthesis is not controlled by FSH nor by testosterone. This factor(s) involved in rat Leydig cell steroidogenesis, at a step beyond the adenylate cyclase, does not require protein synthesis for testosterone formation whereas it does for oestradiol-17β production. It should be noted that a germ cell–Sertoli cell interaction modulates the synthesis of this factor(s). J. Endocr. (1987) 114, 459–467


1987 ◽  
Vol 112 (2) ◽  
pp. 311-NP ◽  
Author(s):  
H. D. Nicholson ◽  
R. T. S. Worley ◽  
S. E. F. Guldenaar ◽  
B. T. Pickering

ABSTRACT An oxytocin-like peptide is present in the interstitial cells of the testis, and testicular concentrations of oxytocin have been shown to increase seminiferous tubule movements in vitro. We have used the drug ethan-1,2-dimethanesulphonate (EDS), which depletes the Leydig cell population of the adult rat testis, to examine further the relationships between the Leydig cell, testicular oxytocin and tubular movements. Adult rats were injected i.p. with a single dose of EDS (75 mg/kg) or of vehicle (25% dimethyl sulphoxide). Histological study 3 and 10 days after treatment with EDS showed a reduction in the number of interstitial cells, and levels of oxytocin immunoreactivity were undetectable by radioimmunoassay. Immunostaining revealed very few oxytocin-reactive cells. Spontaneous contractile activity of the seminiferous tubules in vitro was also dramatically reduced, but could be restored by the addition of oxytocin to the medium. Four weeks after EDS treatment, the interstitial cells were similar to those in the control animals both in number and in immunostaining; immunoassayable oxytocin was present and tubular movements were normal. The EDS effect, seen at 3 and 10 days, was not altered by daily treatment with testosterone. However, repopulation of the testes with oxytocin-immunoreactive cells was not seen until 6 weeks in the testosterone-treated animals. We suggest that the Leydig cells are the main source of oxytocin immunoreactivity in the testis and that this oxytocin is involved in modulating seminiferous tubule movements and the resultant sperm transport. The results also imply that testosterone does not play a major role in controlling tubular activity in the mature rat. J. Endocr. (1987) 112, 311–316


1985 ◽  
Vol 105 (3) ◽  
pp. 311-NP ◽  
Author(s):  
I. D. Morris

ABSTRACT Weekly doses of the Leydig cell cytotoxic ethylene dimethanesulphonate (EDS) were administered to adult male rats in an attempt to study the endocrine activity of the testis in the absence of Leydig cells. One week after the first dose serum testosterone and LH concentrations and seminal vesicle weights were close to levels in castrated rats and testicular human chorionic gonadotrophin (hCG) binding was severely depressed. These changes were maintained for a further week but subsequently began to return to, but did not achieve, control levels. After six weekly doses seminal vesicle weight and serum testosterone concentrations were significantly higher than in the castrated rats. Serum LH concentrations were declining towards control values at 4 weeks but had risen again at 6 weeks. Serum FSH concentrations were raised to about 50% of the value in castrated rats throughout the period studied. Testis weight and hCG binding, which initially fell, were partially restored at 6 weeks and spermatogenesis was recovering. The data show that responses of the testis to multiple doses of EDS are similar to those after a single dose. This apparent resistance indicates that the regenerating Leydig cells are functionally different from the mature Leydig cell. The similarities between the maturing Leydig cell seen after EDS destruction and those in the immature rat suggest that EDS will provide a valuable model for the investigation of Leydig cell physiology. J. Endocr. (1985) 105, 311–316


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 417-425 ◽  
Author(s):  
Yuichi Shima ◽  
Kanako Miyabayashi ◽  
Takashi Baba ◽  
Hiroyuki Otake ◽  
Sanae Oka ◽  
...  

Adrenal 4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) (Nr5a1) is a nuclear receptor essential for reproductive tissue development and endocrine regulation. This factor is expressed in steroidogenic tissues (e.g. adrenal glands and gonads), and expression of this factor is tightly regulated in a tissue and cell type-specific manner. Our previous studies have identified tissue and cell type-specific enhancers in the introns of the Ad4BP/SF-1 gene in fetal adrenal glands, ventromedial hypothalamus, and pituitary gonadotrope. Characterization of the enhancers had provided new insights into tissue and cell development. However, these studies have failed to identify any gonad-specific enhancer. Here, we identified a fetal Leydig cell-specific enhancer in the upstream region of the mouse Ad4BP/SF-1 gene using transgenic mouse assays. Alignment of the upstream regions among vertebrate animal species demonstrated that the enhancer consisted of three conserved regions, whereby the most highly conserved region contained an Ad4BP/SF-1 binding sequence and an E-box. Mutation of each sequence abolished the enhancer activity and led to a loss of reporter gene expression. These results suggested that Ad4BP/SF-1 gene expression in the fetal Leydig cell is regulated by a yet unidentified E-box binding protein(s) and by an autoregulatory loop formed by Ad4BP/SF-1. Although fetal Leydig cells have been thought to play crucial roles for masculinization of various fetal tissues through androgen production, other functions have remained elusive. Our identification of a fetal Leydig cell-specific enhancer in the Ad4BP/SF-1 gene would be a powerful tool to address these gaps in the knowledge base.


2008 ◽  
Vol 20 (9) ◽  
pp. 9
Author(s):  
M. A. Sarraj ◽  
H. Chua ◽  
A. Umbers ◽  
R. Escalona ◽  
K. L. Loveland ◽  
...  

Betaglycan is a co-receptor that binds both TGF-β and inhibin, and thereby acts as a modulator of the activities of multiple members of the TGF-β superfamily. We have previously shown that the murine betaglycan gene is expressed in somatic cells within the interstitium of the fetal testis from 12.5 dpc-16.5 dpc. Betaglycan protein was predominantly localised to the interstitial cells surrounding the developing seminiferous cords which stained positive for Cyp11a (p450 Scc), a Leydig cell marker. In order to determine the impact of this receptor on fetal Leydig cell biology, RNA was extracted from two independently collected sets of betaglycan knockout and wildtype male and female gonads at 12.5 dpc and 13.5 dpc (n = 4 gonad pairs/set), and quantitative real time PCR was performed to determine changes in the expression levels of key genes involved in fetal Leydig cell differentiation and function. This analysis revealed that the levels of mRNA expression of SF1, Cyp11a and Cyp17a1 were downregulated between 12.5–13.5 dpc in the betaglycan knockout embryos compared with wildtype embryos immediately after the time of sex determination. Interestingly, the expression level of the key Sertoli cell marker SRY-(sex determining region Y)-box 9 (Sox9) was transiently decreased at 12.5 dpc by 50% in the knockout testis in comparison with that of the wildtype testis. No significant change was found one day later at 13.5 dpc. Our data show that betaglycan is predominantly expressed in the fetal Leydig cells of the murine testis and that the presence of this receptor is required for normal fetal Leydig cell differentiation. Furthermore, the transient downregulation of Sox9 expression in null testis suggests that Sertoli cell differentiation may also be affected in betaglycan knockout mice, and that this defect may precede the defect in Leydig cell development. Supported by: the NHMRC Australia (RegKeys 338516; 241000).


Sign in / Sign up

Export Citation Format

Share Document