Faculty Opinions recommendation of Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells.

Author(s):  
E Charles Snow
Immunity ◽  
2011 ◽  
Vol 35 (4) ◽  
pp. 622-632 ◽  
Author(s):  
Kristina T. Lu ◽  
Yuka Kanno ◽  
Jennifer L. Cannons ◽  
Robin Handon ◽  
Paul Bible ◽  
...  

2019 ◽  
Author(s):  
S Ehrlich ◽  
K Wild ◽  
M Smits ◽  
K Zoldan ◽  
M Hofmann ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4660
Author(s):  
Hsin-Fang Chang ◽  
Marie-Louise Wirkner ◽  
Elmar Krause ◽  
Jens Rettig

Cytotoxic T lymphocytes (CTL) are an essential part of our immune system by killing infected and malignant cells. To fully understand this process, it is necessary to study CTL function in the physiological setting of a living organism to account for their interplay with other immune cells like CD4+ T helper cells and macrophages. The anterior chamber of the eye (ACE), originally developed for diabetes research, is ideally suited for non-invasive and longitudinal in vivo imaging. We take advantage of the ACE window to observe immune responses, particularly allorejection of islets of Langerhans cells by CTLs. We follow the onset of the rejection after vascularization on islets until the end of the rejection process for about a month by repetitive two-photon microscopy. We find that CTLs show reduced migration on allogeneic islets in vivo compared to in vitro data, indicating CTL activation. Interestingly, the temporal infiltration pattern of T cells during rejection is precisely regulated, showing enrichment of CD4+ T helper cells on the islets before arrival of CD8+ CTLs. The adaptation of the ACE to immune responses enables the examination of the mechanism and regulation of CTL-mediated killing in vivo and to further investigate the killing in gene-deficient mice that resemble severe human immune diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adalie Baniahmad ◽  
Katharina Birkner ◽  
Johanna Görg ◽  
Julia Loos ◽  
Frauke Zipp ◽  
...  

AbstractBeyond the major role of T cells in the pathogenesis of the autoimmune neuroinflammatory disorder multiple sclerosis (MS), recent studies have highlighted the impact of B cells on pathogenic inflammatory processes. Follicular T helper cells (Tfh) are essential for the promotion of B cell-driven immune responses. However, their role in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), is poorly investigated. A first step to achieving a better understanding of the contribution of Tfh cells to the disease is the consideration of Tfh cell localization in relation to genetic background and EAE induction method. Here, we investigated the Tfh cell distribution during disease progression in disease relevant organs in three different EAE models. An increase of Tfh frequency in the central nervous system (CNS) was observed during peak of C57BL/6 J EAE, paralleling chronic disease activity, whereas in relapsing–remitting SJL EAE mice Tfh cell frequencies were increased during remission. Furthermore, transferred Tfh-skewed cells polarized in vitro induced mild clinical symptoms in B6.Rag1−/− mice. We identified significantly higher levels of Tfh cells in the dura mater than in the CNS both in C57BL/6 and in SJL/J mice. Overall, our study emphasizes diverse, non-static roles of Tfh cells during autoimmune neuroinflammation.


2011 ◽  
Vol 155 (s1) ◽  
pp. 110-116 ◽  
Author(s):  
Akemi Abe ◽  
Takayuki Ohtomo ◽  
Satoshi Koyama ◽  
Noriko Kitamura ◽  
Osamu Kaminuma ◽  
...  

2008 ◽  
Vol 205 (7) ◽  
pp. 1543-1550 ◽  
Author(s):  
Ludovic de Beaucoudrey ◽  
Anne Puel ◽  
Orchidée Filipe-Santos ◽  
Aurélie Cobat ◽  
Pegah Ghandil ◽  
...  

The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo.


Sign in / Sign up

Export Citation Format

Share Document