Faculty Opinions recommendation of Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein.

Author(s):  
Daniel Klionsky
Cell Research ◽  
2012 ◽  
Vol 22 (3) ◽  
pp. 473-489 ◽  
Author(s):  
Weijiao Huang ◽  
Wooyoung Choi ◽  
Wanqiu Hu ◽  
Na Mi ◽  
Qiang Guo ◽  
...  

2004 ◽  
Vol 337 (3) ◽  
pp. 761-770 ◽  
Author(s):  
Mutsuko Kukimoto-Niino ◽  
Kazutaka Murayama ◽  
Mio Inoue ◽  
Takaho Terada ◽  
Jeremy R.H. Tame ◽  
...  

2001 ◽  
Vol 79 (8) ◽  
pp. 692-704 ◽  
Author(s):  
Focco van den Akker

The X-ray crystal structure of the dimerized atrial natriuretic factor (ANF) receptor hormone-binding domain has provided a first structural view of this anti-hypertensive receptor. The structure reveals a surprising evolutionary link to the periplasmic-binding protein fold family. Furthermore, the presence of a chloride ion in the membrane distal domain and the presence of a second putative effector pocket suggests that the extracellular domain of this receptor is allosterically regulated. The scope of this article is to extensively review the data published on this receptor and to correlate it with the hormone-binding domain structure. In addition, a more detailed description is provided of the important features of this structure including the different binding sites for the ANF hormone, chloride ion, putative effector pocket, glycosylation sites, and dimer interface.Key words: crystal structure, periplasmic-binding protein fold, guanylyl cyclase, hormone receptor.


2000 ◽  
Vol 113 (22) ◽  
pp. 3931-3938 ◽  
Author(s):  
U. Rescher ◽  
N. Zobiack ◽  
V. Gerke

Annexin 1 is a Ca(2+)-regulated membrane binding protein and a major substrate of the epidermal growth factor receptor kinase. Because of its properties and intracellular distribution, the protein has been implicated in endocytic trafficking of the receptor, in particular in receptor sorting occurring in multivesicular endosomes. Up to now, however, the localization of annexin 1 to cellular membranes has been limited to subcellular fractionation and immunocytochemical analyses of fixed cells. To establish its localization in live cells, we followed the intracellular fate of annexin 1 molecules fused to the Green Fluorescent Protein (GFP). We show that annexin 1-GFP associates with distinct, transferrin receptor-positive membrane structures in living HeLa cells. A GFP chimera containing the Ca(2+)/phospholipid-binding protein core of annexin 1 also shows a punctate intracellular distribution, although the structures labeled here do not resemble early but, at least in part, late endosomes. In contrast, the cores of annexins 2 and 4 fused to GFP exhibit a cytoplasmic or a different punctate distribution, respectively, indicating that the highly homologous annexin core domains carry distinct membrane specificities within live cells. By inactivating the three high-affinity Ca(2+) binding sites in annexin 1 we also show that endosomal membrane binding of the protein in live HeLa cells depends on the integrity of these Ca(2+) binding sites. More detailed analysis identifies a single Ca(2+) site in the second annexin repeat that is crucially involved in establishing the membrane association. These results reveal for the first time that intracellular membrane binding of an annexin in living cells requires Ca(2+) and is mediated in part through an annexin core domain that is capable of establishing specific interactions.


1994 ◽  
Vol 13 (1) ◽  
pp. 205-212 ◽  
Author(s):  
D.W. Hoffman ◽  
C. Davies ◽  
S.E. Gerchman ◽  
J.H. Kycia ◽  
S.J. Porter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document