Faculty Opinions recommendation of Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation.

Author(s):  
Chris Somerville
1991 ◽  
Vol 11 (7) ◽  
pp. 3762-3772 ◽  
Author(s):  
T Lodi ◽  
B Guiard

Expression of the Saccharomyces cerevisiae gene encoding cytochrome b2 (EC 1.2.2.3), CYB2, was investigated by direct analysis of mRNA transcripts and by measurement of the expression of lacZ fused to the CYB2 control regions. These studies indicated that regulation of the CYB2 gene is subject to several metabolic controls at the transcriptional level: inhibition due to glucose fermentation, induction by lactate, and inhibition in anaerobiosis or in absence of heme biosynthesis. Furthermore, we have shown that the CYB2 promoter contains one cis negative regulatory region and two heme-dependent positive regions, one of which is controlled by the transcriptional regulator CYP1 (HAP1) which is involved in the modulation of the expression of several oxygen-regulated genes. The CYP1 (HAP1)-binding sequence was located by gel retardation and DNase I footprinting experiments and compared with the binding sequences previously characterized in detail (UAS1CYC1, UAS'CYP3 (CYC7), and UASCTT1).


2012 ◽  
Vol 78 (17) ◽  
pp. 6302-6308 ◽  
Author(s):  
Tiago Viana ◽  
Maria C. Loureiro-Dias ◽  
Virgílio Loureiro ◽  
Catarina Prista

ABSTRACTIntracellular pH (pHin) is a tightly regulated physiological parameter, which controls cell performance in all living systems. The purpose of this work was to evaluate if and how H+homeostasis is accomplished by an industrial wine strain ofSaccharomyces cerevisiaewhile fermenting real must under the harsh winery conditions prevalent in the late stages of the fermentation process, in particular low pH and high ethanol concentrations and temperature. Cells grown at 15, 25, and 30°C were harvested in exponential and early and late stationary phases. Intracellular pH remained in the range of 6.0 to 6.4, decreasing significantly only by the end of glucose fermentation, in particular at lower temperatures (pHin5.2 at 15°C), although the cells remained viable and metabolically active. The cell capability of extruding H+via H+-ATPase and of keeping H+out by means of an impermeable membrane were evaluated as potential mechanisms of H+homeostasis. At 30°C, H+efflux was higher in all stages. The most striking observation was that cells in late stationary phase became almost impermeable to H+. Even when these cells were challenged with high ethanol concentrations (up to 20%) added in the assay, their permeability to H+remained very low, being almost undetectable at 15°C. Comparatively, ethanol significantly increased the H+permeability of cells in exponential phase. Understanding the molecular and physiological events underlying yeast H+homeostasis at late stages of fermentations may contribute to the development of more robust strains suitable to efficiently produce a high-quality wine.


2001 ◽  
Vol 36 (6) ◽  
pp. 549-557 ◽  
Author(s):  
A Bekatorou ◽  
A.A Koutinas ◽  
A Kaliafas ◽  
M Kanellaki

2017 ◽  
Vol 63 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Trudy Jansen ◽  
Justin Wallace Hoff ◽  
Neil Jolly ◽  
Willem Heber van Zyl

2011 ◽  
Vol 3 (1) ◽  
pp. 178-184
Author(s):  
ASHISH RUNTHALA ◽  
◽  
ANKITASH TULYANI ◽  
DHIRAJ SHARMA ◽  
MAHAVEER SINGH

2016 ◽  
Vol 2 (01) ◽  
Author(s):  
Saepulloh , ◽  
Rina S. Soetopo ◽  
Prima Besty Asthary

Primary sludge from paper mill waste water treatment plant (WWTP) is a potential raw material for ethanol production because of its high organic content especially cellulose. This study consisted of two main stage: cellulose hydrolisis and glucose fermentation. Primary sludge was hydrolyzed using cellulase with concentration of 10, 20, and 25 FPU/g cellulose under conditions of pH 5.5 and temperature 50oC for 24, 48, 72, and 98 hours. Glucose obtained from hydrolis was fermented in optimum condition (pH 4.5 and temperature 28oC) using 10% of Saccharomyces cerevisiae inoculum for 24, 48, 72, and 98 hours. The results showed that the optimum hydrolysis was achieved using cellulase 25 FPU within 72 hours with glucose content obtained was 1.92% and saccharification degree was 61.05%. Ethanol produced from glucose fermentation was about 0.77% and fermentation degree was 78.5%. Overall conversion yield was 46.61% and ethanol yield was 192.5 g/kg dry weight.Keywords: papermill primary sludge,cellulose, cellulase, Saccharomyces cerevisiae, bioethanol  ABSTRAKLumpur primer dari IPAL industri kertas mempunyai potensi sebagai bahan baku untuk produksi bioetanol, karena kandungan organiknya yang tinggi terutama selulosa. Lumpur primer IPAL diperoleh dari industri kertas berbahan baku virgin pulp. Secara garis besar percobaan dilakukan dengan sistem dua tahap yaitu proses hidrolisis selulosa dan dilanjut proses fermentasi glukosa. Percobaan proses hidrolisis selulosa dilakukan pada pH 5,5 dan suhu 50oC dengan 2 faktor perlakuan yaitu dosis selulase (10, 20, dan 25 FPU/g selulosa) dan lama proses hidrolisis (24, 48, 72, dan 96 jam), sedangkan percobaan proses fermentasi dilakukan terhadap glukosa hasil proses hidrolis pada kondisi optimumnya. Proses fermentasi dilakukan pada pH 4,5 dan suhu 28oC menggunakan ragi Saccharomyces cerevisiae sebanyak 10% dengan perlakuan lama inkubasi (24; 48; 72; 96 jam). Hasil percobaan menunjukkan bahwa kondisi optimum proses hidrolisis diperoleh pada dosis selulase 25 FPU/g selulosa selama 72 jam, dengan kadar glukosa 1,92% dan derajat sakarifikasi 61,05%. Kadar etanol yang diperoleh dari proses fermentasi glukosa hasil hidrolisis adalah 0,77% dengan efisiensi fermentasi 78,5%. Secara keseluruhan efisiensi konversi selulosa pada lumpur primer IPAL industri kertas menjadi etanol adalah 46,61% dengan yield sebesar 192 g/kg berat kering.Kata kunci: lumpur primer industri kertas, selulosa, selulase, Saccharomyces cerevisiae, bioetanol


Sign in / Sign up

Export Citation Format

Share Document