Faculty Opinions recommendation of Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning.

Author(s):  
Mark Brincat ◽  
Jean Calleja-Agius
1975 ◽  
Vol 228 (5) ◽  
pp. 1346-1350 ◽  
Author(s):  
J Beattie ◽  
AH Smith

In a colony of white leghorn chickens maintained at 3,800 m successive generations exhibited an increasing hatchability of fertile eggs incubated at elevation of 3,100m. Embryonated eggs produced by the high-altitude-adapted line (WM) and by genetically similar but unselected stocks at sea level (D) were incubated at 3,100 m and at sea level, and the oxygen consumption was measured on individual eggs after the 17th day of incubation. At sea level, oxygen consumption rates of WM strain were less than that of SL stocks during late embryonic development. At 3,100 m, embryonic respriation of all strains was reduced, but to a much lesser degree in the high-altitude strain. It appears that a decreased metabolic activity of the late embryo coupled with a slower rate of embryonic developement is an important factor in the adaptation of the domestic fowl to high altitude.


2010 ◽  
Vol 298 (1) ◽  
pp. R166-R172 ◽  
Author(s):  
Martha C. Tissot van Patot ◽  
Andrew J. Murray ◽  
Virginia Beckey ◽  
Tereza Cindrova-Davies ◽  
Jemma Johns ◽  
...  

We have previously demonstrated placentas from laboring deliveries at high altitude have lower binding of hypoxia-inducible transcription factor (HIF) to DNA than those from low altitude. It has recently been reported that labor causes oxidative stress in placentas, likely due to ischemic hypoxic insult. We hypothesized that placentas of high-altitude residents acquired resistance, in the course of their development, to oxidative stress during labor. Full-thickness placental tissue biopsies were collected from laboring vaginal and nonlaboring cesarean-section term (37–41 wk) deliveries from healthy pregnancies at sea level and at 3,100 m. After freezing in liquid nitrogen within 5 min of delivery, we quantified hydrophilic and lipid metabolites using 31P and 1H NMR metabolomics. Metabolic markers of oxidative stress, increased glycolysis, and free amino acids were present in placentas following labor at sea level, but not at 3,100 m. In contrast, at 3,100 m, the placentas were characterized by the presence of concentrations of stored energy potential (phosphocreatine), antioxidants, and low free amino acid concentrations. Placentas from pregnancies at sea level subjected to labor display evidence of oxidative stress. However, laboring placentas at 3,100 m have little or no oxidative stress at the time of delivery, suggesting greater resistance to ischemia-reperfusion. We postulate that hypoxic preconditioning might occur in placentas that develop at high altitude.


2007 ◽  
Vol 292 (3) ◽  
pp. L678-L684 ◽  
Author(s):  
Yuansheng Gao ◽  
Ada D. Portugal ◽  
Sewite Negash ◽  
Weilin Zhou ◽  
Lawrence D. Longo ◽  
...  

An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses (∼140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for ∼110 days and from control ewes. In vessels constricted to endothelin-1, 8-bromoguanosine-cGMP (8-Br-cGMP) caused a smaller relaxation in chronically hypoxic (CH) vessels compared with controls. Rp-8-Br-PET-cGMPS, a PKG inhibitor, attenuated relaxation to 8-Br-cGMP in control vessels to a greater extent than in CH vessels. Y-27632, a ROCK inhibitor, significantly potentiated 8-Br-cGMP-induced relaxation of CH vessels and had only a minor effect in control vessels. The expression of PKG was increased but was not accompanied with an increase in the activity of the enzyme in CH vessels. The expression of type II ROCK and activity of ROCKs were increased in CH vessels. The phosphorylation of threonine (Thr)696 and Thr850 of the regulatory subunit MYPT1 of myosin light chain phosphatase was inhibited by 8-Br-cGMP to a lesser extent in CH vessels than in controls. The difference was eliminated by Y-27632. These results suggest that chronic hypoxia in utero attenuates PKG-mediated relaxation in pulmonary arteries, partly due to inhibition of PKG activity and partly due to enhanced ROCK activity. Increased ROCK activity may inhibit PKG action through increased phosphorylation of MYPT1 at Thr696 and Thr850.


2020 ◽  
Vol 319 (3) ◽  
pp. L456-L470 ◽  
Author(s):  
Sheila Krishnan ◽  
Robert S. Stearman ◽  
Lily Zeng ◽  
Amanda Fisher ◽  
Elizabeth A. Mickler ◽  
...  

Mechanisms driving adaptive developmental responses to chronic high-altitude (HA) exposure are incompletely known. We developed a novel rat model mimicking the human condition of cardiopulmonary adaptation to HA starting at conception and spanning the in utero and postnatal timeframe. We assessed lung growth and cardiopulmonary structure and function and performed transcriptome analyses to identify mechanisms facilitating developmental adaptations to chronic hypoxia. To generate the model, breeding pairs of Sprague-Dawley rats were exposed to hypobaric hypoxia (equivalent to 9,000 ft elevation). Mating, pregnancy, and delivery occurred in hypoxic conditions. Six weeks postpartum, structural and functional data were collected in the offspring. RNA-Seq was performed on right ventricle (RV) and lung tissue. Age-matched breeding pairs and offspring under room air (RA) conditions served as controls. Hypoxic rats exhibited significantly lower body weights and higher hematocrit levels, alveolar volumes, pulmonary diffusion capacities, RV mass, and RV systolic pressure, as well as increased pulmonary artery remodeling. RNA-Seq analyses revealed multiple differentially expressed genes in lungs and RVs from hypoxic rats. Although there was considerable similarity between hypoxic lungs and RVs compared with RA controls, several upstream regulators unique to lung or RV were identified. We noted a pattern of immune downregulation and regulation patterns of immune and hormonal mediators similar to the genome from patients with pulmonary arterial hypertension. In summary, we developed a novel murine model of chronic hypoxia exposure that demonstrates functional and structural phenotypes similar to human adaptation. We identified transcriptomic alterations that suggest potential mechanisms for adaptation to chronic HA.


1981 ◽  
Vol 50 (2) ◽  
pp. 363-366 ◽  
Author(s):  
N. F. Voelkel ◽  
L. Hegstrand ◽  
J. T. Reeves ◽  
I. F. McMurty ◽  
P. B. Molinoff

Exposure to chronic hypoxia results in a lower resting heart rate and a blunted cardiovascular responsiveness to beta-adrenergic receptor stimulation. Possible effects of acclimatization to high altitude on the binding of [125I]iodohydroxybenzylpindolol to beta-adrenergic receptors on membranes of right and left ventricles of rat heart were determined. Chronic high-altitude exposure led to a decrease in the density of beta-adrenergic receptors in nonhypertrophied left ventricles as well as in hypertrophied right ventricles. The affinity of the receptor for the radioligand was not changed by the exposure to high altitude, suggesting that the properties of the receptor were not affected. Basal and isoproterenol-stimulated adenylate cyclase activities were decreased in membranes prepared from hearts and pulmonary arteries of rats acclimatized to high altitude. The loss of cardiac beta-adrenergic receptors in rats adapted to high altitude was prevented by the chronic coadministration of a low dose of DL-propranolol. The results suggest that changes in beta-adrenergic receptor density may partially explain the hemodynamic adaptation that occurs with chronic hypoxia. These decreases may be due to a loss of functional beta-adrenergic receptors caused by chronically elevated concentrations of circulating neurally released catecholamines.


Author(s):  
Claire M. West ◽  
Oliver H. Wearing ◽  
Rod G. Rhem ◽  
Graham R. Scott

Hypoxia at high altitude can constrain metabolism and performance, and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia, and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4300 m) for 6-8 weeks. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi130-vi130
Author(s):  
Laura Caflisch ◽  
Alessia Lodi ◽  
Aleksandra Gruslova ◽  
David Cavazos ◽  
Michael Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document