Faculty Opinions recommendation of Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells.

Author(s):  
Hector Mayani
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2898-2898
Author(s):  
Ingmar Bruns ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
Sebastian Buest ◽  
Julia Fröbel ◽  
...  

Abstract Abstract 2898 Multiple myeloma (MM) patients often suffer from hematopoietic impairment already at the time of diagnosis with anemia as the prevailing symptom. Given the overt affection of the bone marrow in MM patients by the invasion of malignant plasma cells, we hypothesized that hematopoietic insufficiency in these patients may originate from a functional impairment of hematopoietic stem and progenitor cells. Quantitative analysis of BM CD34+ HSPC cell subsets from MM patients and age-matched healthy donors showed a significant decline of all HSPC subsets including hematopoietic stem cells, common myeloid and lymphoid progenitors, granulocyte-macrophage progenitors and megakaryocyte-erythrocyte progenitors in MM patients. The greatest diminution was observed in megakaryocyte-erythrocyte progenitors (MEP) which were 4.9-fold reduced in comparison to healthy donors. Transcriptional analyses of CD34+ HSPC subsets revealed a significant deregulation of signaling pathways that was particularly striking for TGF beta signaling and suggested increased activation of this signaling pathway. Immunhistochemical staining of phosphorylated smad2, the downstream mediator of TGF receptor I kinase activation, in bone marrow sections and immunoblotting of purified CD34+ HSPC of MM patients confirmed the overactivation of TGF beta signaling. On a functional level, we observed significantly reduced long-term self-renewal and clonogenic growth, particularly of the erythroid precursors BFU-E and CFU-E, in CD34+ HSPC of MM patients which could be restored by inhibition of TGF beta signaling. Proliferation and cell cycle analyses revealed a significantly decreased proliferation activity in CD34+ HSPC and, particularly, MEP. Again, this was reversible after inhibition of TGF beta signaling. In addition, the transcriptional analyses showed disturbance of pathways involved in the adhesion and migration of HSPC and the gene encoding for the principal hyaluronan receptor CD44 throughout the HSPC subsets. This was corroborated by immunofluorescence imaging of CD44 on HSPC subsets showing a marked downregulation in the patients' cells. In line, the adhesion of CD34+ HSPC subsets to hyaluronan and their migration towards SDF-1 was significantly inhibited. Subsequent xenotransplantation of CD34+ HSPC from MM patients and healthy donors into myeloma-free recipients revealed even increased long-term engraftment of CD34+ HSPC obtained from MM patients and normal differentiation capacities suggesting that the observed functional alterations in fact depend on the MM-related bone marrow microenvironment. Our data show that hematopoietic impairment in patients with multiple myeloma originates, at least in part, from functional alterations of hematopoietic stem and progenitor cells. These alterations seem to depend on the disease-related changes of the bone marrow microenvironment. Currently, experiments are underway to elucidate in more detail the role of the microenvironment and the responsible structures for the impairment of HSPC in MM patients. These data will be presented. Disclosures: Kobbe: Celgene: Consultancy, Research Funding; Ortho Biotec: Consultancy.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Stem Cells ◽  
1999 ◽  
Vol 17 (6) ◽  
pp. 339-344 ◽  
Author(s):  
John Eugenes Chisi ◽  
Joanna Wdzieczak‐Bakala ◽  
Josiane Thierry ◽  
Cecile V. Briscoe ◽  
Andrew C. Riches

2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Siddharth Krishnan ◽  
Kelly Wemyss ◽  
Ian E. Prise ◽  
Flora A. McClure ◽  
Conor O’Boyle ◽  
...  

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


Sign in / Sign up

Export Citation Format

Share Document