Faculty Opinions recommendation of Telomerase and telomere length in pulmonary fibrosis.

Author(s):  
Elizabeth Renzoni
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 258-258
Author(s):  
Bogdan Dumitriu ◽  
Danielle M. Townsley ◽  
Christina Chen ◽  
Rodrigo T. Calado ◽  
Phillip Scheinberg ◽  
...  

Abstract Telomeres, the terminal complex of hexameric repeats and shelterin protein of linear chromosomes, shorten with every mitosis. Telomere attrition is accelerated in patients with mutations in telomerase complex genes (Calado and Young, NEJM 2009) and with replicative stress, as in chronic bone marrow failure. Historically, male hormones were effective in some patients with aplastic anemia (AA), and case reports and retrospective observations have suggested hematologic improvement in patients with telomeropathies treated with male hormones. Exposure of normal lymphocytes and CD34+ cells to androgens increased telomerase activity in vitro, and in cells from individuals carrying loss-of-function TERT mutations to normal levels (Calado et al. Blood 2009). We have conducted a phase I/II single-center trial (www.clinicaltrials.gov NCT01441037) assessing the safety and the effect of male hormones on telomere attrition in patients with telomere disease. Entry criteria included age-adjusted mean telomere content ≤1%ile, ± identified mutations in telomerase complex genes, and low blood counts (hemoglobin <9.5g/dL, platelets <30,000/uL, or neutrophils <1,000/uL) and/or pulmonary fibrosis. Danazol, 800 mg/day, was administered for 2 years. Primary protocol objectives were safety and activity of danazol in slowing telomere attrition. Secondary endpoints were hematologic response at 3 and 6 months (increase in hemoglobin >1.5 g/dL or platelets >20,000/uL or neutrophils >500/uL). Twenty seven patients were enrolled, accrual commencing August 2011. Most patients had moderate (n=20) or severe (n=4) AA, one had myelodysplasia, and two pulmonary fibrosis. Median age was 41 years (range 17-66); 15 patients were females. There was only one severe adverse event possibly related to drug. Frequent reported symptoms were muscle cramping with dehydration and exacerbation of headaches. Changes in serum lipid profiles were observed in all patients, with increased serum LDL and decreased HDL. Severe elevation in liver enzymes was not observed. One death occurred on study, not treatment related (pneumonia in a pulmonary fibrosis case). Mean telomere content of leukocytes at enrollment was compared with mean telomere content at 6, 12, and 24 months on drug as well as available samples before starting danazol. Telomere attrition prior to protocol entry, determined by q-pcr, was estimated at loss of 227 bp/year (95% CI, 58-368bp; p=0.009). Androgen administration appeared to elongate telomeres: the average increase in telomere length at 6 months was 205 bp (95% CI, 82-329 bp; p=0.002), at 12 months 441 bp (95% CI, 263-620 bp; p=0.0001), and at 24 months 347 bp (95% CI, 87-607 bp; p=0.01). A similar trend of increase in mean telomere content with danazol was confirmed in flow-sorted lymphocytes. Hematologic response rate, as defined by protocol, was 67% at 3 months and 60% at 6 months. Nine of eleven patients who required RBCs became transfusion-independent; two of them also became platelet transfusion independent. Liver cirrhosis was present in 6 patients at enrollment; worsening of liver disease in one occurred with continued alcohol abuse. To date 8 patients have completed two years of danazol, all of them responders; 10 patients remain on danazol, and 9 patients stopped drug prior to 2 years. Blood counts in all patients have been stable with drug discontinuation, with median follow up of 258 days (range 31-335). In conclusion, male hormones are safe and efficacious in patients with inherited bone marrow failure associated with telomeropathies, producing clinically meaningful hematologic improvement. Increased mean telomere content in patients, suggests that in vitro demonstration of up-regulation by sex hormones of TERT and of telomerase enzymatic activity is the mechanism of action of androgens in vivo. To our knowledge, this is the first successful prospective effort to favorably modulate telomere length by pharmacologic intervention in humans. Sex hormones may be useful in other conditions of accelerated telomere attrition, as for example after chemotherapy, and other drugs and small molecules may be usefully screened for their effects on telomerase in vitro. Disclosures Off Label Use: we want to determine if treatment with male hormone danazol is safe and improves hematologic response as first-line treatment in patients with AA and telomere disease(www.clinicaltrials.gov NCT01441037)..


Respirology ◽  
2015 ◽  
Vol 20 (6) ◽  
pp. 947-952 ◽  
Author(s):  
Jinghong Dai ◽  
Hourong Cai ◽  
Hui Li ◽  
Yi Zhuang ◽  
Haiyan Min ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3096-3096
Author(s):  
Geraldine Aubert ◽  
Mark Hills ◽  
Carol Cremin ◽  
Irma Vulto ◽  
Barbara McGillivray ◽  
...  

Abstract Dyskeratosis Congenita (DC) is a marrow failure syndrome characterized by skin and nail abnormalities, oral leukoplakia and very short telomeres in circulating leukocytes. Heritable defects in telomere maintenance have been directly implicated in DC by the discovery of mutations in genes encoding components of the telomerase complex: DKC1, TERT, and TERC as well as mutations in the gene encoding the telomere binding protein TINF2. Defective telomeres in DC result in impaired hematopoiesis and predispose to myeloproliferative disorders. Heritable mutations in TERT and TERC have also been implicated in patients presenting with aplastic anemia (AA) and idiopathic pulmonary fibrosis (IPF) without clinical signs of DC. Because short telomeres appear to be associated with increased risks for various human cancers, including head and neck cancer, we sequenced TERT and TERC in two patients with oral carcinoma and anemia. The first patient presented at age 47 with invasive squamous cell carcinoma (SCC) of the tongue. The patient had a male sibling said to be also suffering from SCC which was not available for analysis and his mother died at age 37 from lymphoma. The patient displayed mild macrocytic anemia and oral leukoplakia. The telomere lengths of peripheral blood cells from the patient, determined by flow-FISH, were found to be below the first percentile expected for his age. In contrast, the leukocyte telomere lengths for the patient’s father and a female sibling were within the normal range. Bi-directional sequence analysis of TERT and TERC was conducted on DNA isolated from whole blood for the three family members. A novel mutation in exon 9 of TERT, C842T, situated within the reverse transcriptase domain of the telomerase enzyme catalytic component was identified in the patient but not in the 2 unaffected relatives. This suggested inheritance of a TERT mutation from the mother. The function of TERT C842T was compared to wildtype (WT) TERT by transfecting WT and mutant TERT cDNA into clonal Jurkat T cells and measuring telomere elongation by flow-FISH following 4 weeks of culture. TERT C842T showed 30% of the elongation obtained with WT TERT (p=0.0034). The second patient is a 60 yr old male with SCC of the tongue and refractory anemia with ring sideroblasts. The leukocyte telomere length was around the 1st percentile expected for his age. TERT sequencing revealed a three nucleotide deletion resulting in loss of 441E while retaining frame that is expected to impair telomerase activity. Our data support the concept that mutations in TERT can cause defective telomere maintenance and thereby compromise the proliferation of hematopoietic as well as epithelial cells. The resulting loss of normal cells selects for cells with defective DNA damage checkpoints that are triggered by chromosome ends without telomere repeats. Such cells are at high risk of becoming malignant because their proliferation will be stimulated by the loss of normal cells and their genome is very unstable as telomere function is compromised. Together these factors facilitate and enable clonal evolution of abnormal cells by DNA repair defects and cycles of chromosome fusions/bridge/breakage. Hematological and pathological findings consistent with Dyskeratosis Congenita together with peripheral blood telomere length measurements appear useful parameters to screen for telomere defects in patients and facilitate the discovery of mutations in “telomere maintenance” genes. The TERT mutations in patients with oral carcinomas illustrate that disease manifestations of telomere dysfunction in humans can be very diverse and range from DC, to defective hematopoiesis, pulmonary fibrosis and cancer predisposition.


Respirology ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 1265-1273
Author(s):  
Chuling Fang ◽  
Hui Huang ◽  
Qian Zhang ◽  
Na Wang ◽  
Xiaoyan Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document