Telomere Elongation and Hematologic Improvement in Humans Treated with Androgens: A Prospective Clinical Trial of Danazol in Telomeropathies

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 258-258
Author(s):  
Bogdan Dumitriu ◽  
Danielle M. Townsley ◽  
Christina Chen ◽  
Rodrigo T. Calado ◽  
Phillip Scheinberg ◽  
...  

Abstract Telomeres, the terminal complex of hexameric repeats and shelterin protein of linear chromosomes, shorten with every mitosis. Telomere attrition is accelerated in patients with mutations in telomerase complex genes (Calado and Young, NEJM 2009) and with replicative stress, as in chronic bone marrow failure. Historically, male hormones were effective in some patients with aplastic anemia (AA), and case reports and retrospective observations have suggested hematologic improvement in patients with telomeropathies treated with male hormones. Exposure of normal lymphocytes and CD34+ cells to androgens increased telomerase activity in vitro, and in cells from individuals carrying loss-of-function TERT mutations to normal levels (Calado et al. Blood 2009). We have conducted a phase I/II single-center trial (www.clinicaltrials.gov NCT01441037) assessing the safety and the effect of male hormones on telomere attrition in patients with telomere disease. Entry criteria included age-adjusted mean telomere content ≤1%ile, ± identified mutations in telomerase complex genes, and low blood counts (hemoglobin <9.5g/dL, platelets <30,000/uL, or neutrophils <1,000/uL) and/or pulmonary fibrosis. Danazol, 800 mg/day, was administered for 2 years. Primary protocol objectives were safety and activity of danazol in slowing telomere attrition. Secondary endpoints were hematologic response at 3 and 6 months (increase in hemoglobin >1.5 g/dL or platelets >20,000/uL or neutrophils >500/uL). Twenty seven patients were enrolled, accrual commencing August 2011. Most patients had moderate (n=20) or severe (n=4) AA, one had myelodysplasia, and two pulmonary fibrosis. Median age was 41 years (range 17-66); 15 patients were females. There was only one severe adverse event possibly related to drug. Frequent reported symptoms were muscle cramping with dehydration and exacerbation of headaches. Changes in serum lipid profiles were observed in all patients, with increased serum LDL and decreased HDL. Severe elevation in liver enzymes was not observed. One death occurred on study, not treatment related (pneumonia in a pulmonary fibrosis case). Mean telomere content of leukocytes at enrollment was compared with mean telomere content at 6, 12, and 24 months on drug as well as available samples before starting danazol. Telomere attrition prior to protocol entry, determined by q-pcr, was estimated at loss of 227 bp/year (95% CI, 58-368bp; p=0.009). Androgen administration appeared to elongate telomeres: the average increase in telomere length at 6 months was 205 bp (95% CI, 82-329 bp; p=0.002), at 12 months 441 bp (95% CI, 263-620 bp; p=0.0001), and at 24 months 347 bp (95% CI, 87-607 bp; p=0.01). A similar trend of increase in mean telomere content with danazol was confirmed in flow-sorted lymphocytes. Hematologic response rate, as defined by protocol, was 67% at 3 months and 60% at 6 months. Nine of eleven patients who required RBCs became transfusion-independent; two of them also became platelet transfusion independent. Liver cirrhosis was present in 6 patients at enrollment; worsening of liver disease in one occurred with continued alcohol abuse. To date 8 patients have completed two years of danazol, all of them responders; 10 patients remain on danazol, and 9 patients stopped drug prior to 2 years. Blood counts in all patients have been stable with drug discontinuation, with median follow up of 258 days (range 31-335). In conclusion, male hormones are safe and efficacious in patients with inherited bone marrow failure associated with telomeropathies, producing clinically meaningful hematologic improvement. Increased mean telomere content in patients, suggests that in vitro demonstration of up-regulation by sex hormones of TERT and of telomerase enzymatic activity is the mechanism of action of androgens in vivo. To our knowledge, this is the first successful prospective effort to favorably modulate telomere length by pharmacologic intervention in humans. Sex hormones may be useful in other conditions of accelerated telomere attrition, as for example after chemotherapy, and other drugs and small molecules may be usefully screened for their effects on telomerase in vitro. Disclosures Off Label Use: we want to determine if treatment with male hormone danazol is safe and improves hematologic response as first-line treatment in patients with AA and telomere disease(www.clinicaltrials.gov NCT01441037)..

2017 ◽  
Author(s):  
Jonathan K. Alder ◽  
Vidya Sagar Hanumanthu ◽  
Margaret A. Strong ◽  
Amy E. DeZern ◽  
Susan E. Stanley ◽  
...  

AbstractVery short telomere length (TL) provokes cellular senescence in vitro, but the clinical utility of TL measurement in a hospital-based setting has not been determined. We tested the diagnostic and prognostic value of TL measurement by flow cytometry and fluorescence in situ hybridization (flowFISH) in individuals with mutations in telomerase and telomere maintenance genes, and examined prospectively whether TL altered treatment decisions for patients with bone marrow failure. TL had a definable normal range across populations with discrete lower and upper boundaries. TL above the 50th age-adjusted percentile had a 100% negative predictive value for clinically relevant mutations in telomere maintenance genes, but the lower threshold for diagnosis was age-dependent. The extent of deviation from the age-adjusted median correlated with the age at diagnosis of a telomere syndrome as well as the predominant complication. Mild short telomere defects manifested in adults as pulmonary fibrosis-emphysema, while severely short TL manifested in children as bone marrow failure and immunodeficiency. Among 38 newly diagnosed patients with bone marrow failure, TL shorter than the 1st age-adjusted percentile enriched for patients with germline mutations in inherited bone marrow failure genes, such as RUNX1, in addition to telomere maintenance genes. The TL result modified the hematopoietic stem cell donor choice and/or treatment regimen in one-fourth of the cases (9 of 38,24%). TL testing by flowFISH has diagnostic and predictive value in definable clinical settings. In patients with bone marrow failure, it altered treatment decisions for a significant subset.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2230-2230
Author(s):  
Blanche P Alter ◽  
Neelam Giri ◽  
Peter M. Lansdorp ◽  
Gabriela M. Baerlocher ◽  
Philip S Rosenberg ◽  
...  

Abstract Abstract 2230 Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome with a complex clinical phenotype, including dysplastic nails, lacy reticular pigmentation, and oral leukoplakia (the diagnostic triad). Numerous other physical abnormalities may be present, in addition to cytopenias due to bone marrow failure, and a high risk of leukemia or solid tumors. However, many patients have no physical findings at diagnosis. Patients with DC have very short telomeres, and approximately one-half have a mutation in one of six genes important in telomere biology. Telomere length in leukocyte subsets, measured by automated flow fluorescence in situ hybridization (flow-FISH), is both sensitive and specific for identifying individuals with DC. Telomeres consist of nucleotide repeats and a protein complex at chromosome ends that are critical in chromosomal stability which shorten during normal cell division. Cross-sectional studies of normal individuals suggest that telomere length decreases with age in a sigmoid pattern from birth to old age. In a cross-sectional analysis of 26 patients with DC, we previously observed that telomere length appeared to be stable or even to slightly increase with age (BP Alter et al, Blood 110:149, 2007). Similar results were shown in 23 different DC patients by others (M Bessler et al, FEBS Lett 2010 in press). We speculated that these data were influenced by early presentation (or recognition) of clinically more severe patients, while patients with similar telomere length who were clinically milder were identified at older ages. In this pilot study, we examined, for the first time, the longitudinal age-association of telomere attrition in nine patients with DC who were followed for five to seven years (currently 8 – 50 years of age). These include three patients with mutations in TERC, and two each with TINF2, TERT, and DKC1 mutations. When first studied, four had normal hematopoiesis, three moderate cytopenias, one was receiving androgens, and one was on transfusions. Subsequently, one with normal hematopoiesis developed mild thrombocytopenia, one who was on transfusions responded to androgens, and one with moderate aplastic anemia became severe. In all cases, telomere length decreased with age. In a linear regression model, the average annual decrease in telomere length in lymphocytes was 167 base pairs/year (bp/yr) + 104, similar to the rate in granulocytes, 159 + 92 bp/yr. According to the literature, the rate of telomere attrition in longitudinal studies in normal blood is ∼45-50 bp/yr, albeit by methods other than flow-FISH; the rate of telomere shortening appears to decrease with increasing age. The average patient Z-scores at the beginning of the study were -3.9 standard deviations below the median for age in healthy normal controls, and were -4.3 at the end, consistent with the impression that DC patient telomeres shorten somewhat more than expected from normal aging. These data support the hypothesis that the earlier cross-sectional results for patients with DC indeed were influenced by the cross-sectional rather than longitudinal nature of the data. The current longitudinal data suggest that telomere shortening could possibly be accelerated in patients with DC, but larger studies are required. Our results indicate that patients with DC have telomeres that are much shorter than normal for their age, and that over time they continue to shorten, consistent with DC being classified as a disorder of premature aging. Disclosures: Lansdorp: Repeat Diagnostics: Equity Ownership.


2018 ◽  
Vol 115 (10) ◽  
pp. E2358-E2365 ◽  
Author(s):  
Jonathan K. Alder ◽  
Vidya Sagar Hanumanthu ◽  
Margaret A. Strong ◽  
Amy E. DeZern ◽  
Susan E. Stanley ◽  
...  

Telomere length (TL) predicts the onset of cellular senescence in vitro but the diagnostic utility of TL measurement in clinical settings is not fully known. We tested the value of TL measurement by flow cytometry and FISH (flowFISH) in patients with mutations in telomerase and telomere maintenance genes. TL had a discrete and reproducible normal range with definable upper and lower boundaries. While TL above the 50th age-adjusted percentile had a 100% negative predictive value for clinically relevant mutations, the lower threshold in mutation carriers was age-dependent, and adult mutation carriers often overlapped with the lowest decile of controls. The extent of telomere shortening correlated with the age at diagnosis as well as the short telomere syndrome phenotype. Extremely short TL caused bone marrow failure and immunodeficiency in children and young adults, while milder defects manifested as pulmonary fibrosis-emphysema in adults. We prospectively examined whether TL altered treatment decisions for newly diagnosed idiopathic bone marrow failure patients and found abnormally short TL enriched for patients with mutations in some inherited bone marrow failure genes, such as RUNX1, in addition to telomerase and telomere maintenance genes. The result was actionable, altering the choice of treatment regimen and/or hematopoietic stem cell donor in one-fourth of the cases (9 of 38, 24%). We conclude that TL measurement by flowFISH, when used for targeted clinical indications and in limited settings, can influence treatment decisions in ways that improve outcome.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Danielle M. Townsley ◽  
Thomas Winkler

Abstract Nontransplant therapeutic options for acquired and constitutional aplastic anemia have significantly expanded during the last 5 years. In the future, transplant may be required less frequently. That trilineage hematologic responses could be achieved with the single agent eltrombopag in refractory aplastic anemia promotes new interest in growth factors after years of failed trials using other growth factor agents. Preliminary results adding eltrombopag to immunosuppressive therapy are promising, but long-term follow-up data evaluating clonal evolution rates are required before promoting its standard use in treatment-naive disease. Danazol, which is traditionally less preferred for treating cytopenias, is capable of preventing telomere attrition associated with hematologic responses in constitutional bone marrow failure resulting from telomere disease.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1043-1046
Author(s):  
GD Goss ◽  
MA Wittwer ◽  
WR Bezwoda ◽  
J Herman ◽  
A Rabson ◽  
...  

Bone marrow transplantation for severe idiopathic aplastic anemia was undertaken in a patient, using his monozygotic twin brother as the donor. In spite of the use of syngeneic bone marrow, failure of engraftment occurred on two occasions. In vitro studies demonstrated that natural killer (NK) cells from the recipient markedly inhibited the growth of donor bone marrow granulocyte progenitor cells. On a third attempt, successful bone marrow engraftment was achieved following high-dose cyclophosphamide, which has previously been shown to be inhibitory to NK cells. We conclude that NK cell activity may play an important role in bone marrow failure as well as being responsible for at least some cases of aplastic anemia.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Wang ◽  
Shu-chong Mei ◽  
Rong Fu ◽  
Hua-quan Wang ◽  
Zong-hong Shao

Abnormal telomere attrition has been found to be closely related to patients with SAA in recent years. To identify the incidence of telomere attrition in SAA patients and investigate the relationship of telomere length with clinical parameters, SAA patients(n=27)and healthy controls(n=15)were enrolled in this study. Telomere length of PWBCs was significantly shorter in SAA patients than in controls. Analysis of gene expression of Shelterin complex revealed markedly low levels ofPOT1expression in SAA groups relative to controls. No differences in the gene expression of the other Shelterin components—TRF1,TRF2,TIN2,TPP1, andRAP1—were identified. Addition of IFN-γto culture media induced a similar fall in POT1 expression in bone marrow cells to that observed in cells cultured in the presence of SAA serum, suggesting IFN-γis the agent responsible for this effect of SAA serum. Furthermore, ATR, phosphorylated ATR, and phosphorylated ATM/ATR substrate were all found similarly increased in bone marrow cells exposed to SAA serum, TNF-α, or IFN-γ. In summary, SAA patients have short telomeres and decreased POT1 expression. TNF-αand IFN-γare found at high concentrations in SAA patients and may be the effectors that trigger apoptosis through POT1 and ATR.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4157-4157
Author(s):  
Stan Benke ◽  
D. S. Houston ◽  
Inderjeet Dokal ◽  
Tom Vulliamy

Abstract The gene encoding the RNA component of human telomerase (hTERC) is mutated in families with the autosomal dominant form of dyskeratosis congenita (DC). The phenomenon of genetic anticipation has recently been reported to accompany this form of DC, with disease severity increasing in offspring of affected individuals. It has been postulated that anticipation in these families relates to the adverse impact of hTERC mutations on inherited telomere length, with progressive telomere shortening seen in succeeding generations (Nat Gen2004; 36:447). We describe here a novel hTERC mutation, with affected individuals presenting in adulthood with mild mucocutaneous abnormalities, bone marrow failure and a pattern of penetrance supporting the presence of disease anticipation. The proband in the family studied presented at age 49 with squamous cell carcinoma of the tongue and a history of oral leukoplakia which he had developed at age 30. Peripheral blood on presentation was remarkable only for a mild macrocytic anemia. During treatment of his malignancy, severe and irreversible bone marrow hypoplasia was precipitated by a single cycle of cisplatinum chemotherapy. The patient’s brother at age 25 had been previously diagnosed with severe aplastic anemia; this was refractory to standard immunosuppression with cyclosporine and antithymocyte globulin. No somatic abnormailites were identified in this patient. Testing for Fanconi anemia in both siblings was negative. Direct sequencing analysis of hTERC in these patients revealed both to be heterozygous for a novel hTERC mutation (79 deletion C). Further studies among family members documented heterozygosity for the mutation in the mother of these two siblings. At age 77, she displayed none of the mucocutaneous signs associated with DC, while the only abnormality seen in her peripheral blood was an elevated mean corpuscular volume. The hTERC mutation seen in this family most likely exerts its effects through disruption of the pseudoknot domain. The findings of an individual with normal longevity, minimal phenotypic expression and affected offspring are further evidence of genetic anticipation being an important feature of autosomal dominant DC. Correlation with determination of telomere length has been initiated.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


Sign in / Sign up

Export Citation Format

Share Document