Faculty Opinions recommendation of Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas.

Author(s):  
Micah Luftig
Cell Reports ◽  
2013 ◽  
Vol 5 (2) ◽  
pp. 458-470 ◽  
Author(s):  
Ming-Han Tsai ◽  
Ana Raykova ◽  
Olaf Klinke ◽  
Katharina Bernhardt ◽  
Kathrin Gärtner ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Limei Liu ◽  
Jiaomin Yang ◽  
Wuguang Ji ◽  
Chao Wang

This investigation aims to study the effect of curcumin on the proliferation, cycle arrest, and apoptosis of Epstein–Barr virus- (EBV-) positive nasopharyngeal carcinoma (NPC) cells. EBV+ NPC cells were subjected to curcumin treatment. The cell viability was evaluated with the CCK-8. Cell cycle and apoptosis were analyzed by flow cytometry analysis. Expression (protein and mRNA) levels were detected with western blotting and quantitative real-time PCR, respectively. Curcumin efficiently reduced the viability of EBV+ NPC cells. Curcumin induced the cycle arrest of the HONE1 and HK1-EBV cells positive for EBV. Moreover, curcumin treatment promoted the NPC cell apoptosis, via the mitochondria- and death receptor-mediated pathways. Furthermore, curcumin decreased the expression of EBNA1 in the HONE1 and HK1-EBV cells and inhibited the transcriptional level of EBNA1 in the HeLa cells. Curcumin induced EBNA1 degradation via the proteasome-ubiquitin pathway. In addition, curcumin inhibited the proliferation of HONE1 and HK1-EBV cells positive for EBV, probably by decreasing the expression level of EBNA1. In both the HONE1 and HK1-EBV cells, curcumin inhibited the EBV latent and lytic replication. Curcumin could reduce the EBNA1 expression and exert antitumor effects against NPC in vitro.


2005 ◽  
Vol 201 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Victoria A. Pudney ◽  
Alison M. Leese ◽  
Alan B. Rickinson ◽  
Andrew D. Hislop

Antigen immunodominance is an unexplained feature of CD8+ T cell responses to herpesviruses, which are agents whose lytic replication involves the sequential expression of immediate early (IE), early (E), and late (L) proteins. Here, we analyze the primary CD8 response to Epstein-Barr virus (EBV) infection for reactivity to 2 IE proteins, 11 representative E proteins, and 10 representative L proteins, across a range of HLA backgrounds. Responses were consistently skewed toward epitopes in IE and a subset of E proteins, with only occasional responses to novel epitopes in L proteins. CD8+ T cell clones to representative IE, E, and L epitopes were assayed against EBV-transformed lymphoblastoid cell lines (LCLs) containing lytically infected cells. This showed direct recognition of lytically infected cells by all three sets of effectors but at markedly different levels, in the order IE > E ≫ L, indicating that the efficiency of epitope presentation falls dramatically with progress of the lytic cycle. Thus, EBV lytic cycle antigens display a hierarchy of immunodominance that directly reflects the efficiency of their presentation in lytically infected cells; the CD8+ T cell response thereby focuses on targets whose recognition leads to maximal biologic effect.


2017 ◽  
Vol 138 ◽  
pp. 68-78 ◽  
Author(s):  
Lu Huang ◽  
Mengtian Yang ◽  
Yan Yuan ◽  
Xiaojuan Li ◽  
Ersheng Kuang

2017 ◽  
Vol 80 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Yongsheng Lin ◽  
Qian Wang ◽  
Qiong Gu ◽  
Hongao Zhang ◽  
Cheng Jiang ◽  
...  

2010 ◽  
Vol 84 (19) ◽  
pp. 9920-9931 ◽  
Author(s):  
Andreas M. F. Heilmann ◽  
Michael A. Calderwood ◽  
Eric Johannsen

ABSTRACT The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two viral transactivators, Zta and Rta. We previously reported that the EBV protein LF2 binds Rta, inhibits Rta promoter activation, and blocks EBV replication in cells. In addition, LF2 induces SUMO2/3 modification of Rta. We now show that this modification occurs at four lysines within the Rta activation domain (426, 446, 517, and 530) and that sumoylation of Rta is not essential for its repression. Coexpression studies demonstrated that Rta is sequestered to the extranuclear cytoskeleton in the presence of LF2. We mapped the LF2 binding site to Rta amino acids (aa) 476 to 519 and showed that LF2 binding is critical for Rta relocalization and repression. The core of this binding site, Rta aa 500 to 526, confers LF2-mediated relocalization and repression onto the artificial transcription factor GAL4-VP16. Mutational analysis of LF2 provided further evidence that Rta redistribution is essential for repression. Rta localization changes during replication of the LF2-positive P3HR1 genome, but not during replication of the LF2-negative B95-8 genome. BLRF2 protein expression was decreased and delayed in P3HR1 cells compared with B95-8 cells, consistent with reduced Rta activity. By contrast, BMRF1 expression, regulated primarily by Zta, did not differ significantly between the two cell lines. Our results support a model in which LF2 regulates EBV replication by binding to Rta and redistributing it out of the nucleus.


Sign in / Sign up

Export Citation Format

Share Document