Faculty Opinions recommendation of Regulation of maternal Wnt mRNA translation in C. elegans embryos.

Author(s):  
Florence Marlow
Keyword(s):  
2021 ◽  
Author(s):  
Stephen M Blazie ◽  
Seika Takayanagi-Kiya ◽  
Katherine A McCulloch ◽  
Yishi Jin

AbstractThe translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of theC. elegansRNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR dependent manner. Our study reveals anin vivomechanism for eIF3 in governing neuronal protein levels to control activity states and offers insights into how eIF3 dysregulation contributes to neuronal disorders.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Stephen M Blazie ◽  
Seika Takayanagi-Kiya ◽  
Katherine M McCulloch ◽  
Yishi Jin

The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neuronal disorders.


2021 ◽  
Author(s):  
Laura E Wester ◽  
Anne Lanjuin ◽  
Emanuel H W Bruckisch ◽  
Maria C Perez Matos ◽  
Caroline Heintz ◽  
...  

Translating Ribosome Affinity Purification (TRAP) methods have emerged as a powerful approach to profile actively translated transcripts in specific cell and tissue types. Epitope tagged ribosomal subunits are expressed in defined cell populations and used to pull down ribosomes and their associated mRNAs, providing a snapshot of cell type-specific translation occurring in that space and time. Current TRAP toolkits available to the C. elegans community have been built using multi-copy arrays, randomly integrated in the genome. Here we introduce a Single-copy Knock In Translating Ribosome ImmunoPrecipitation (SKI TRIP) tool kit, a collection of C. elegans strains engineered by CRISPR in which tissue specific expression of FLAG tagged ribosomal subunit protein RPL-22 is driven by cassettes present in single copy from defined sites in the genome. In depth characterization of the SKI TRIP strains and methodology shows that 3xFLAG tagged RPL-22 expressed from its endogenous locus or within defined cell types incorporates into actively translating ribosomes and can be used to efficiently and cleanly pull-down cell type specific transcripts without impacting overall mRNA translation or fitness of the animal. We propose SKI TRIP use for the study of processes that are acutely sensitive to changes in translation, such as aging.


2018 ◽  
Author(s):  
Meetu Seth ◽  
Masaki Shirayama ◽  
Wen Tang ◽  
En-zhi Shen ◽  
Shikui Tu ◽  
...  

2019 ◽  
Author(s):  
Marissa L. Glover ◽  
A. Max. Burroughs ◽  
Thea A. Egelhofer ◽  
Makena N. Pule ◽  
L. Aravind ◽  
...  

ABSTRACTCellular translation surveillance rescues ribosomes that stall on problematic mRNAs. During translation surveillance, endonucleolytic cleavage of the problematic mRNA is a critical step in rescuing stalled ribosomes. However, the nuclease(s) responsible remain unknown. Here we identify NONU-1 as a novel endoribonuclease required for translation surveillance pathways including No-Go and Nonstop mRNA Decay. We show that: (1) NONU-1 reduces Nonstop and No-Go mRNA levels; (2) NONU-1 contains an Smr RNase domain required for mRNA decay and with properties similar to the unknown endonuclease; and (3) the domain architecture and catalytic residues of NONU-1 are conserved throughout metazoans and eukaryotes, respectively. We extend our results inC. elegansto homologous factors inS. cerevisiae, showing conservation of function of the NONU-1 protein across billions of years of evolution. Our work establishes the identity of a previously unknown factor critical to translation surveillance and will inform mechanistic studies at the intersection of translation and mRNA decay.


Development ◽  
2013 ◽  
Vol 140 (22) ◽  
pp. 4614-4623 ◽  
Author(s):  
M. Oldenbroek ◽  
S. M. Robertson ◽  
T. Guven-Ozkan ◽  
C. Spike ◽  
D. Greenstein ◽  
...  
Keyword(s):  

2002 ◽  
Vol 12 (17) ◽  
pp. 1448-1461 ◽  
Author(s):  
Xiaomeng Long ◽  
Carmen Spycher ◽  
Z.Stanley Han ◽  
Ann M. Rose ◽  
Fritz Müller ◽  
...  

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document