Faculty Opinions recommendation of CD8 T cells in innate immune responses: using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection.

Author(s):  
Tian Wang
mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Jenny E. Suarez-Ramirez ◽  
Margarite L. Tarrio ◽  
Kwangsin Kim ◽  
Delia A. Demers ◽  
Christine A. Biron

ABSTRACT The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. IMPORTANCE Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.


2015 ◽  
Vol 89 (18) ◽  
pp. 9299-9312 ◽  
Author(s):  
Niranjan Butchi ◽  
Parul Kapil ◽  
Shweta Puntambekar ◽  
Stephen A. Stohlman ◽  
David R. Hinton ◽  
...  

ABSTRACTMyd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5). However, a contribution of Myd88-dependent signals to CNS pathogenesis has not been assessed. Infected Myd88−/−mice failed to control virus, exhibited enhanced clinical disease coincident with increased demyelination, and succumbed to infection within 3 weeks. The induction of IFN-α/β, as well as of proinflammatory cytokines and chemokines, was impaired early during infection. However, defects in both IFN-α/β and select proinflammatory factors were rapidly overcome prior to T cell recruitment. Myd88 deficiency also specifically blunted myeloid and CD4 T cell recruitment into the CNS without affecting CD8 T cells. Moreover, CD4 T cells but not CD8 T cells were impaired in IFN-γ production. Ineffective virus control indeed correlated most prominently with reduced antiviral IFN-γ in the CNS of Myd88−/−mice. The results demonstrate a crucial role for Myd88 both in early induction of innate immune responses during coronavirus-induced encephalomyelitis and in specifically promoting protective CD4 T cell activation. In the absence of these responses, functional CD8 T cells are insufficient to control viral spread within the CNS, resulting in severe demyelination.IMPORTANCEDuring central nervous system (CNS) infections, signaling through the adaptor protein Myd88 promotes both innate and adaptive immune responses. The extent to which Myd88 regulates antiviral type I IFN, proinflammatory factors, adaptive immunity, and pathology is pathogen dependent. These results reveal that Myd88 protects from lethal neurotropic coronavirus-induced encephalomyelitis by accelerating but not enhancing the induction of IFN-α/β, as well as by promoting peripheral activation and CNS accumulation of virus-specific CD4 T cells secreting IFN-γ. By controlling both early innate immune responses and CD4 T cell-mediated antiviral IFN-γ, Myd88 signaling limits the initial viral dissemination and is vital for T cell-mediated control of viral loads. Uncontrolled viral replication in the absence of Myd88 leads to severe demyelination and pathology despite overall reduced inflammatory responses. These data support a vital role of Myd88 signaling in protective antimicrobial functions in the CNS by promoting proinflammatory mediators and T cell-mediated IFN-γ production.


Science ◽  
2014 ◽  
Vol 346 (6205) ◽  
pp. 98-101 ◽  
Author(s):  
Jason M. Schenkel ◽  
Kathryn A. Fraser ◽  
Lalit K. Beura ◽  
Kristen E. Pauken ◽  
Vaiva Vezys ◽  
...  

The pathogen recognition theory dictates that, upon viral infection, the innate immune system first detects microbial products and then responds by providing instructions to adaptive CD8 T cells. Here, we show in mice that tissue resident memory CD8 T cells (TRMcells), non-recirculating cells located at common sites of infection, can achieve near-sterilizing immunity against viral infections by reversing this flow of information. Upon antigen resensitization within the mouse female reproductive mucosae, CD8+TRMcells secrete cytokines that trigger rapid adaptive and innate immune responses, including local humoral responses, maturation of local dendritic cells, and activation of natural killer cells. This provided near-sterilizing immunity against an antigenically unrelated viral infection. Thus, CD8+TRMcells rapidly trigger an antiviral state by amplifying receptor-derived signals from previously encountered pathogens.


2020 ◽  
Author(s):  
Marion Ferren ◽  
Valérie Favede ◽  
Didier Decimo ◽  
Mathieu Iampietro ◽  
Nicole A. P. Lieberman ◽  
...  

Abstract SARS-CoV-2 has caused a global pandemic of Covid-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also lead to central nervous system infection and neurological sequelae. We developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer the unique opportunity to study the early steps of the pathogenesis and screening of antivirals. Using these models, we validated the early tropism of the virus in the lung and demonstrated that SARS-CoV2 can infect brainstem and cerebellum, mainly by targeting granular neurons. Viral infection induced specific interferon and innate immune responses with patterns specific to each organ along with apoptotic, necroptotic, and pyroptotic cell death. Overall, our data illustrate the potential of rapidly modeling complex tissue level interactions of viral infection in a newly emerged virus.


2009 ◽  
Vol 9 (11) ◽  
pp. 1313-1322 ◽  
Author(s):  
Jill C. Graff ◽  
Emily M. Kimmel ◽  
Brett Freedman ◽  
Igor A. Schepetkin ◽  
Jeff Holderness ◽  
...  

2020 ◽  
Vol 6 (9) ◽  
pp. eaay9269
Author(s):  
Yong Fu ◽  
Yan Ding ◽  
Qinghui Wang ◽  
Feng Zhu ◽  
Yulong Tan ◽  
...  

Malaria parasites suppress host immune responses to facilitate their survival, but the underlying mechanism remains elusive. Here, we found that blood-stage malaria parasites predominantly induced CD4+Foxp3+CD25+ regulatory T cells to release soluble fibrinogen-like protein 2 (sFGL2), which substantially enhanced the infection. This was attributed to the capacity of sFGL2 to inhibit macrophages from releasing monocyte chemoattractant protein-1 (MCP-1) and to sequentially reduce the recruitment of natural killer/natural killer T cells to the spleen and the production of interferon-γ. sFGL2 inhibited c-Jun N-terminal kinase phosphorylation in the Toll-like receptor 2 signaling pathway of macrophages dependent on FcγRIIB receptor to release MCP-1. Notably, sFGL2 were markedly elevated in the sera of patients with malaria, and recombinant FGL2 substantially suppressed Plasmodium falciparum from inducing macrophages to release MCP-1. Therefore, we highlight a previously unrecognized immune suppression strategy of malaria parasites and uncover the fundamental mechanism of sFGL2 to suppress host innate immune responses.


Sign in / Sign up

Export Citation Format

Share Document