Faculty Opinions recommendation of Dereplication: racing to speed up the natural products discovery process.

Author(s):  
David Newman
2015 ◽  
Vol 32 (6) ◽  
pp. 779-810 ◽  
Author(s):  
Susana P. Gaudêncio ◽  
Florbela Pereira

To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their “bag of tricks” aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process.


2015 ◽  
Vol 112 (39) ◽  
pp. 11999-12004 ◽  
Author(s):  
Kenji L. Kurita ◽  
Emerson Glassey ◽  
Roger G. Linington

Traditional natural products discovery using a combination of live/dead screening followed by iterative bioassay-guided fractionation affords no information about compound structure or mode of action until late in the discovery process. This leads to high rates of rediscovery and low probabilities of finding compounds with unique biological and/or chemical properties. By integrating image-based phenotypic screening in HeLa cells with high-resolution untargeted metabolomics analysis, we have developed a new platform, termed Compound Activity Mapping, that is capable of directly predicting the identities and modes of action of bioactive constituents for any complex natural product extract library. This new tool can be used to rapidly identify novel bioactive constituents and provide predictions of compound modes of action directly from primary screening data. This approach inverts the natural products discovery process from the existing ‟grind and find” model to a targeted, hypothesis-driven discovery model where the chemical features and biological function of bioactive metabolites are known early in the screening workflow, and lead compounds can be rationally selected based on biological and/or chemical novelty. We demonstrate the utility of the Compound Activity Mapping platform by combining 10,977 mass spectral features and 58,032 biological measurements from a library of 234 natural products extracts and integrating these two datasets to identify 13 clusters of fractions containing 11 known compound families and four new compounds. Using Compound Activity Mapping we discovered the quinocinnolinomycins, a new family of natural products with a unique carbon skeleton that cause endoplasmic reticulum stress.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


2002 ◽  
Vol 74 (1) ◽  
pp. 145-150 ◽  
Author(s):  
PETER R. SEIDL

The use of products extracted from plants for medicinal purposes can be traced to the beginnings of civilization and up until the end of the nineteenth century natural products were the principal source of medicines. Since then their relative importance has oscillated according to the strategies of large pharmaceutical companies. Now that these strategies are changing, there are new opportunities for countries like Brazil, in which a large proportion of the world's biodiversity is located. There are, however, new circumstances that must be taken into consideration: material must be collected by groups which are formally authorized to do so and under the conditions of the Convention of Biological Diversity, the discovery process is being successively outsourced to smaller specialized firms and there is a growing integration with producers of cosmetics and phytomedicines.


2020 ◽  
Vol 49 (D1) ◽  
pp. D509-D515
Author(s):  
Chuanyu Lyu ◽  
Tong Chen ◽  
Bo Qiang ◽  
Ningfeng Liu ◽  
Heyu Wang ◽  
...  

Abstract Marine organisms are expected to be an important source of inspiration for drug discovery after terrestrial plants and microorganisms. Despite the remarkable progress in the field of marine natural products (MNPs) chemistry, there are only a few open access databases dedicated to MNPs research. To meet the growing demand for mining and sharing for MNPs-related data resources, we developed CMNPD, a comprehensive marine natural products database based on manually curated data. CMNPD currently contains more than 31 000 chemical entities with various physicochemical and pharmacokinetic properties, standardized biological activity data, systematic taxonomy and geographical distribution of source organisms, and detailed literature citations. It is an integrated platform for structure dereplication (assessment of novelty) of (marine) natural products, discovery of lead compounds, data mining of structure-activity relationships and investigation of chemical ecology. Access is available through a user-friendly web interface at https://www.cmnpd.org. We are committed to providing a free data sharing platform for not only professional MNPs researchers but also the broader scientific community to facilitate drug discovery from the ocean.


Sign in / Sign up

Export Citation Format

Share Document