scholarly journals Faculty Opinions recommendation of Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

Author(s):  
Ben Hayden
2018 ◽  
Vol 15 (3) ◽  
pp. 036014 ◽  
Author(s):  
Robert E Hampson ◽  
Dong Song ◽  
Brian S Robinson ◽  
Dustin Fetterhoff ◽  
Alexander S Dakos ◽  
...  

1999 ◽  
Vol 354 (1387) ◽  
pp. 1307-1324 ◽  
Author(s):  
Anthony D. Wagner ◽  
Wilma Koutstaal ◽  
Daniel L. Schacter

To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event–related fMRI methods now allows for examination of trial–by–trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event–related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event–related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event–related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering.


2019 ◽  
Author(s):  
Blake L. Elliott ◽  
Samuel M. McClure ◽  
Gene Arnold Brewer

Prioritized encoding and retrieval of valuable information is an essential component of human memory due to capacity limits. Individual differences in value-directed encoding may derive from variability in stimulus valuation, memory encoding, or from strategic abilities related to maintenance in working memory. We collected multiple cognitive ability measures to test whether variation in episodic memory, working memory capacity, or both predict differences in value-directed remembering among a large sample of participants (n=205). Confirmatory factor analysis and structural equation modeling was used to assess the contributions of episodic and working memory to value sensitivity in value-directed remembering tasks. Episodic memory ability, but not working memory capacity, was predictive of value-directed remembering. These results suggest that cognitive processes may be differentially related to value-based memory encoding.


2015 ◽  
Vol 27 (4) ◽  
pp. 765-774 ◽  
Author(s):  
Russell Cohen Hoffing ◽  
Aaron R. Seitz

Neurochemical systems are well studied in animal learning; however, ethical issues limit methodologies to explore these systems in humans. Pupillometry provides a glimpse into the brain's neurochemical systems, where pupil dynamics in monkeys have been linked with locus coeruleus (LC) activity, which releases norepinephrine (NE) throughout the brain. Here, we use pupil dynamics as a surrogate measure of neurochemical activity to explore the hypothesis that NE is involved in modulating memory encoding. We examine this using a task-irrelevant learning paradigm in which learning is boosted for stimuli temporally paired with task targets. We show that participants better recognize images that are paired with task targets than distractors and, in correspondence, that pupil size changes more for target-paired than distractor-paired images. To further investigate the hypothesis that NE nonspecifically guides learning for stimuli that are present with its release, a second procedure was used that employed an unexpected sound to activate the LC–NE system and induce pupil-size changes; results indicated a corresponding increase in memorization of images paired with the unexpected sounds. Together, these results suggest a relationship between the LC–NE system, pupil-size changes, and human memory encoding.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1131-1134 ◽  
Author(s):  
Alex P. Vaz ◽  
John H. Wittig ◽  
Sara K. Inati ◽  
Kareem A. Zaghloul

Episodic memory retrieval is thought to rely on the replay of past experiences, yet it remains unknown how human single-unit activity is temporally organized during episodic memory encoding and retrieval. We found that ripple oscillations in the human cortex reflect underlying bursts of single-unit spiking activity that are organized into memory-specific sequences. Spiking sequences occurred repeatedly during memory formation and were replayed during successful memory retrieval, and this replay was associated with ripples in the medial temporal lobe. Together, these data demonstrate that human episodic memory is encoded by specific sequences of neural activity and that memory recall involves reinstating this temporal order of activity.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Kyuwan Choi ◽  
Lisa Bagen ◽  
Linley Robinson ◽  
Gray Umbach ◽  
Michael Rugg ◽  
...  

Abstract The question of longitudinal hippocampal functional specialization is critical to human episodic memory because an accurate understanding of this phenomenon would impact theories of mnemonic function and entail practical consequences for the clinical management of patients undergoing temporal lobe surgery. The implementation of the robotically assisted stereo electroencephalography technique for seizure mapping has provided our group with the opportunity to obtain recordings simultaneously from the anterior and posterior human hippocampus, allowing us to create an unparalleled data set of human subjects with simultaneous anterior and posterior hippocampal recordings along with several cortical regions. Using these data, we address several key questions governing functional hippocampal connectivity in human memory. First, we ask whether functional networks during episodic memory encoding and retrieval are significantly different for the anterior versus posterior hippocampus (PH). We also examine how connections differ across the 2–5 Hz versus 4–9 Hz theta frequency ranges, directly addressing the relative contribution of each of these separate bands in hippocampal–cortical interactions. While we report some overlapping connections, we observe evidence of distinct anterior versus posterior hippocampal networks during memory encoding related to frontal and parietal connectivity as well as hemispheric differences in aggregate connectivity. We frame these findings in light of the proposed AT/PM memory systems. We also observe distinct encoding versus retrieval connectivity patterns between anterior and posterior hippocampal networks, we find that overall connectivity is greater for the PH in the right hemisphere, and further that these networks significantly differ in terms of frontal and parietal connectivity. We place these findings in the context of existing theoretical treatments of human memory systems, especially the proposed AT/PM system. During memory retrieval, we observe significant differences between slow-theta (2–5 Hz) and fast-theta (4–9 Hz) connectivity between the cortex and hippocampus. Taken together, our findings describe mnemonically relevant functional connectivity differences along the longitudinal axis of the human hippocampus that will inform interpretation of models of hippocampal function that seek to integrate rodent and human data.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Catherine M Sweeney-Reed ◽  
Tino Zaehle ◽  
Juergen Voges ◽  
Friedhelm C Schmitt ◽  
Lars Buentjen ◽  
...  

The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.


2018 ◽  
Vol 3 (9) ◽  

This article/packet includes a proposal that presents that the student is intending to conduct the research on memory encoding by including research questions, a purpose statement, and a problem statement so to give an outline of why such a subject should be researched and/or studied. The literature review is presented secondly as it gives detailed information into the subject of memory, although it summarizes previously published research. Data on Time Decay, certain genes involved in memory encoding, and even experiments replicated from previous researchers are included as well. Lastly, peripheral documents are included as they tie the entire packet together such as the chosen journal publication criteria, the letter to the editor of the journal the author has chosen, and the actual article itself.


ASHA Leader ◽  
2007 ◽  
Vol 12 (16) ◽  
pp. 8-11 ◽  
Author(s):  
Nidhi Mahendra ◽  
Allegra Apple
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document