Faculty Opinions recommendation of Impacts of species richness on productivity in a large-scale subtropical forest experiment.

Author(s):  
Forest Isbell
Science ◽  
2019 ◽  
Vol 363 (6423) ◽  
pp. eaav9863 ◽  
Author(s):  
Helge Bruelheide ◽  
Yuxin Chen ◽  
Yuanyuan Huang ◽  
Keping Ma ◽  
Pascal A. Niklaus ◽  
...  

Yang et al. have raised criticism that the results reported by us would not be relevant for natural forests. We argue that productivity is positively related to species richness also in subtropical natural forests, and that both the species pools and the range of tree species richness used in our experiment are representative of many natural forests of this biome.


Science ◽  
2019 ◽  
Vol 363 (6423) ◽  
pp. eaav9117
Author(s):  
Hua Yang ◽  
Zhongling Guo ◽  
Xiuli Chu ◽  
Rongzhou Man ◽  
Jiaxin Chen ◽  
...  

Huang et al. (Reports, 5 October 2018, p. 80) report significant increases in forest productivity from monocultures to multispecies mixtures in subtropical China. However, their estimated productivity decrease due to a 10% tree species loss seems high. We propose that including species richness distribution of the study forests would provide more meaningful estimates of forest-scale responses.


Science ◽  
2018 ◽  
Vol 362 (6410) ◽  
pp. 80-83 ◽  
Author(s):  
Yuanyuan Huang ◽  
Yuxin Chen ◽  
Nadia Castro-Izaguirre ◽  
Martin Baruffol ◽  
Matteo Brezzi ◽  
...  

Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.


1997 ◽  
Vol 100 (1) ◽  
pp. 40 ◽  
Author(s):  
Bruce McCune ◽  
Jonathan P. Dey ◽  
JeriLynn E. Peck ◽  
David Cassell ◽  
Karin Heiman ◽  
...  

2000 ◽  
Vol 51 (2) ◽  
pp. 165 ◽  
Author(s):  
Peter C. Gehrke ◽  
John H. Harris

Riverine fish in New South Wales were studied to examine longitudinal trends in species richness and to identify fish communities on a large spatial scale. Five replicate rivers of four types (montane, slopes, regulated lowland and unregulated lowland) were selected from North Coast, South Coast, Murray and Darling regions. Fishwere sampled during summer and winter in two consecutive years with standardized gear that maximized the range of species caught. The composition of fish communities varied among regions and river types, with little temporal variation. Distinct regional communities converged in montane reaches and diverged downstream. The fish fauna can be classified into North Coast, South Coast, Murray and Darling communities, with a distinct montane community at high elevations irrespective of the drainage division. Species richness increased downstream in both North Coast and South Coast regions by both replacement and the addition of new species. In contrast, species richness in the Darling and Murray regions reached a maximum in the slopes reaches and then declined, reflecting a loss of species in lowland reaches. The small number of species is typical of the freshwater fish faunas of similar climatic regions world-wide. Fish communities identified in this study form logical entities for fisheries management consistent with the ecosystem-focused, catchment-based approach to river management and water reform being adopted in Australia.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


2015 ◽  
Vol 11 (7) ◽  
pp. 20150506 ◽  
Author(s):  
John J. Wiens

The major clades of vertebrates differ dramatically in their current species richness, from 2 to more than 32 000 species each, but the causes of this variation remain poorly understood. For example, a previous study noted that vertebrate clades differ in their diversification rates, but did not explain why they differ. Using a time-calibrated phylogeny and phylogenetic comparative methods, I show that most variation in diversification rates among 12 major vertebrate clades has a simple ecological explanation: predominantly terrestrial clades (i.e. birds, mammals, and lizards and snakes) have higher net diversification rates than predominantly aquatic clades (i.e. amphibians, crocodilians, turtles and all fish clades). These differences in diversification rates are then strongly related to patterns of species richness. Habitat may be more important than other potential explanations for richness patterns in vertebrates (such as climate and metabolic rates) and may also help explain patterns of species richness in many other groups of organisms.


Sign in / Sign up

Export Citation Format

Share Document