scholarly journals Faculty Opinions recommendation of Transcription preinitiation complex structure and dynamics provide insight into genetic diseases.

Author(s):  
Xiaolin Cheng
2019 ◽  
Vol 26 (6) ◽  
pp. 397-406 ◽  
Author(s):  
Chunli Yan ◽  
Thomas Dodd ◽  
Yuan He ◽  
John A. Tainer ◽  
Susan E. Tsutakawa ◽  
...  

2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


2018 ◽  
Vol 843 ◽  
pp. 355-381 ◽  
Author(s):  
Kélig Aujogue ◽  
Alban Pothérat ◽  
Binod Sreenivasan ◽  
François Debray

This paper experimentally investigates the convection in a rapidly rotating tangent cylinder (TC), for Ekman numbers down to $E=3.36\times 10^{-6}$. The apparatus consists of a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e. within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_{c}\sim E^{-4/3}$ and $a_{c}\sim E^{-1/3}$ with the Ekman number $E$. Although exhibiting the same exponents as for plane rotating convection, these laws reflect much larger convective plumes at onset. The structure and dynamics of supercritical plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor–Proudman constraint influences convection in a similar way as solid walls would do. There is a further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitude (close to the heater), depending on the criticality and the Ekman number. The intensity of the thermal wind measured by the Rossby number $Ro$ scales as $Ro\simeq 5.33(Ra_{q}^{\ast })^{0.51}$ with the Rayleigh number based on the heat flux $Ra_{q}^{\ast }\in [10^{-9},10^{-6}]$. This scaling is in agreement with heuristic predictions and previous experiments where the thermal wind is determined by the azimuthal curl of the balance between the Coriolis force and buoyancy. Within the range $Ra\in [2\times 10^{7},10^{9}]$ which we explored, we also observe a transition in the heat transfer through the TC from a diffusivity-free regime where $Nu\simeq 0.38E^{2}Ra^{1.58}$ to a rotation-independent regime where $Nu\simeq 0.2Ra^{0.33}$.


2020 ◽  
Vol 6 (27) ◽  
pp. eaaz2196 ◽  
Author(s):  
R. Barth ◽  
K. Bystricky ◽  
H. A. Shaban

Chromatin conformation regulates gene expression and thus, constant remodeling of chromatin structure is essential to guarantee proper cell function. To gain insight into the spatiotemporal organization of the genome, we use high-density photoactivated localization microscopy and deep learning to obtain temporally resolved super-resolution images of chromatin in living cells. In combination with high-resolution dense motion reconstruction, we find elongated ~45- to 90-nm-wide chromatin “blobs.” A computational chromatin model suggests that these blobs are dynamically associating chromatin fragments in close physical and genomic proximity and adopt topologically associated domain–like interactions in the time-average limit. Experimentally, we found that chromatin exhibits a spatiotemporal correlation over ~4 μm in space and tens of seconds in time, while chromatin dynamics are correlated over ~6 μm and last 40 s. Notably, chromatin structure and dynamics are closely related, which may constitute a mechanism to grant access to regions with high local chromatin concentration.


2019 ◽  
Vol 117 (2) ◽  
pp. 1174-1180 ◽  
Author(s):  
Guang Zhi Dai ◽  
Wen Bo Han ◽  
Ya Ning Mei ◽  
Kuang Xu ◽  
Rui Hua Jiao ◽  
...  

Indolizidine alkaloids such as anticancer drugs vinblastine and vincristine are exceptionally attractive due to their widespread occurrence, prominent bioactivity, complex structure, and sophisticated involvement in the chemical defense for the producing organisms. However, the versatility of the indolizidine alkaloid biosynthesis remains incompletely addressed since the knowledge about such biosynthetic machineries is only limited to several representatives. Herein, we describe the biosynthetic gene cluster (BGC) for the biosynthesis of curvulamine, a skeletally unprecedented antibacterial indolizidine alkaloid from Curvularia sp. IFB-Z10. The molecular architecture of curvulamine results from the functional collaboration of a highly reducing polyketide synthase (CuaA), a pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (CuaB), an NADPH-dependent dehydrogenase (CuaC), and a FAD-dependent monooxygenase (CuaD), with its transportation and abundance regulated by a major facilitator superfamily permease (CuaE) and a Zn(II)Cys6 transcription factor (CuaF), respectively. In contrast to expectations, CuaB is bifunctional and capable of catalyzing the Claisen condensation to form a new C–C bond and the α-hydroxylation of the alanine moiety in exposure to dioxygen. Inspired and guided by the distinct function of CuaB, our genome mining effort discovers bipolamines A−I (bipolamine G is more antibacterial than curvulamine), which represent a collection of previously undescribed polyketide alkaloids from a silent BGC in Bipolaris maydis ATCC48331. The work provides insight into nature’s arsenal for the indolizidine-coined skeletal formation and adds evidence in support of the functional versatility of PLP-dependent enzymes in fungi.


2016 ◽  
Vol 21 (3) ◽  
pp. 260-272 ◽  
Author(s):  
Marinos Giannoukakis

This article is an attempt to demonstrate the relation between appreciation of morphology and structure in form on the one hand, with higher symbolic structures – crucial for meaning formation routines – on the other, and to evaluate their significance in transmedial narratives, primarily in the case of media-based artworks. The use of catastrophe theoretical models to classify forms, their structure and dynamics is proposed, and the question of how these models can give us insight into the meaning that is carried through transmedial narratives (referential or abstract) is examined. Finally, the value of these insights for the composition and practice-based analysis of multimedia art forms is demonstrated.


2012 ◽  
Vol 116 (17) ◽  
pp. 4274-4284 ◽  
Author(s):  
Sandipan Chakraborty ◽  
Takashi Uematsu ◽  
Christer Svanberg ◽  
Per Jacobsson ◽  
Jan Swenson ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Lacalamita

Combined micro-Fourier transform infrared (micro-FTIR) and electron probe microanalyses (EPMA) were performed on a single crystal of charoite from Murun Massif (Russia) in order to get a deeper insight into the vibrational features of crystals with complex structure and chemistry. The micro-FTIR study of a single crystal of charoite was collected in the 6000–400 cm−1 at room temperature and after heating at 100°C. The structural complexity of this mineral is reflected by its infrared spectrum. The analysis revealed a prominent absorption in the OH stretching region as a consequence of band overlapping due to a combination of H2O and OH stretching vibrations. Several overtones of the O-H and Si-O stretching vibration bands were observed at about 4440 and 4080 cm−1 such as absorption possibly due to the organic matter at about 3000–2800 cm−1. No significant change due to the loss of adsorbed water was observed in the spectrum obtained after heating. The occurrence of well-resolved water bending vibration bands at about 1595 and 1667 cm−1 accounts for more than one structural water molecule as expected by charoite-90 polytype structure model from literature. The chemical composition of the studied crystal is close to the literature one.


Sign in / Sign up

Export Citation Format

Share Document