scholarly journals Experimental study of the convection in a rotating tangent cylinder

2018 ◽  
Vol 843 ◽  
pp. 355-381 ◽  
Author(s):  
Kélig Aujogue ◽  
Alban Pothérat ◽  
Binod Sreenivasan ◽  
François Debray

This paper experimentally investigates the convection in a rapidly rotating tangent cylinder (TC), for Ekman numbers down to $E=3.36\times 10^{-6}$. The apparatus consists of a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e. within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_{c}\sim E^{-4/3}$ and $a_{c}\sim E^{-1/3}$ with the Ekman number $E$. Although exhibiting the same exponents as for plane rotating convection, these laws reflect much larger convective plumes at onset. The structure and dynamics of supercritical plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor–Proudman constraint influences convection in a similar way as solid walls would do. There is a further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitude (close to the heater), depending on the criticality and the Ekman number. The intensity of the thermal wind measured by the Rossby number $Ro$ scales as $Ro\simeq 5.33(Ra_{q}^{\ast })^{0.51}$ with the Rayleigh number based on the heat flux $Ra_{q}^{\ast }\in [10^{-9},10^{-6}]$. This scaling is in agreement with heuristic predictions and previous experiments where the thermal wind is determined by the azimuthal curl of the balance between the Coriolis force and buoyancy. Within the range $Ra\in [2\times 10^{7},10^{9}]$ which we explored, we also observe a transition in the heat transfer through the TC from a diffusivity-free regime where $Nu\simeq 0.38E^{2}Ra^{1.58}$ to a rotation-independent regime where $Nu\simeq 0.2Ra^{0.33}$.

1987 ◽  
Vol 109 (2) ◽  
pp. 388-391 ◽  
Author(s):  
E. M. Sparrow ◽  
M. A. Ansari

Measurements were made of the combined natural convection and radiation heat transfer from a horizontal finned tube situated in a vertical channel open at the top and bottom. In one set of experiments, both walls of the channel were heavily insulated, while in a second set of experiments, one of the insulated walls was replaced by an uninsulated metallic sheet. In general, the heat transfer coefficients were found to be lower with the metal wall in place, but only moderately. With the finned tube situated at the bottom of the channel, the differences in the heat transfer coefficients corresponding to the two types of walls were only a few percent. When the tube was positioned at the mid-height of the channel, larger differences were encountered, but in the practical range of Rayleigh numbers, the differences did not exceed 5 percent.


1983 ◽  
Vol 105 (3) ◽  
pp. 433-439 ◽  
Author(s):  
N. Seki ◽  
S. Fukusako ◽  
A. Yamaguchi

Experimental measurements are presented for free convective heat transfer across a parallelogrammic enclosure with the various tilt angles of parallel upper and lower walls insulated. The experiments covered a range of Rayleigh numbers between 3.4 × 104 and 8.6 × 107, and Prandtl numbers between 0.70 and 480. Those also covered the tilt angles of the parallel insulated walls with respect to the horizontal, φ, of 0, ±25, ±45, ±60, and ±70 deg under an aspect ratio of H/W = 1.44. The fluids used were air, transformer oil, and water. It was found that the heat transfer coefficients for φ = −70 deg were decreased to be about 1/18 times those for φ = 0 deg. Experimental results are given as plots of the Nusselt number versus the Rayleigh number. A correlation equation is given for the Nusselt number, Nu, as a function of φ, Pr, and Ra.


Author(s):  
S Chen ◽  
T. L. Chan ◽  
C. W. Leung ◽  
M. A. Liu ◽  
K. Y. Pan ◽  
...  

A multidimensional theoretical model of radiation heat transfer in the cylinder of a direct injection (DI) diesel engine has been developed, which includes submodels of heat release, geometrical description, radiation temperature, soot formation and oxidation, the absorption coefficient and the Monte Carlo method for total exchange areas. In this code, the cylinder is divided into 10 surface zones and four gas zones. The Monte Carlo method integrated with a smoothing technique considering reciprocity and conservation is used to calculate the radiation total exchange areas directly for both the absorbing—emitting media and the complex structure of the cylinder. Using the multi—dimensional approach, the variation in radiant heat transfer with crank angle can be obtained across the whole combustion chamber. The computed results are analysed and discussed in the present study, and they are found to be in agreement with the experimental results.


1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


Author(s):  
Florian Wassermann ◽  
Sven Grundmann ◽  
Michael Kloss ◽  
Heinz-Peter Schiffer

Cyclone cooling is a promising method to enhance heat-transfer processes in future internal turbine-blade leading-edge cooling-ducts. The basic component of such cooling channels is the swirl generator, which induces a swirling movement of the coolant. The angular momentum generates stable, complex and three-dimensional flow structures of helical shape with alternating axial flow directions. Full three-dimensional and three-component velocity measurements using magnetic resonance velocimetry (3D3C-MRV) were conducted, with the aim to understand the complex structure of pipe flows with strong swirl. In order to mimic the effect of different installation concepts of the cyclone-cooling ducts an idealized bend-duct swirl-tube configuration with variable exit orifices has been investigated. Pronounced helical flow structures and distinct velocity zones could be found in this swirl flow. One substantial result is the identification of stationary helix-shaped streaks of high axial velocity in the direct vicinity of the wall. These findings are in good agreement with mass-transfer measurements that also show helix-shaped structures with increased mass transfer at the inner surface of the tube. According to the Reynolds analogy between heat and mass transfer, augmented heat-transfer processes in these areas are to be expected.


2003 ◽  
Vol 125 (4) ◽  
pp. 624-634 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar natural convection (using Boussinesq approximation) within a differentially heated square cavity due to the presence of a single thin fin is presented. Attachment of highly conductive thin fins with lengths equal to 20, 35 and 50 percent of the side, positioned at 7 locations on the hot left wall were examined for Ra=104,105,106, and 107 and Pr=0.707 (total of 84 cases). Placing a fin on the hot left wall generally alters the clockwise rotating vortex that is established due to buoyancy-induced convection. Two competing mechanisms that are responsible for flow and thermal modifications are identified. One is due to the blockage effect of the fin, whereas the other is due to extra heating of the fluid that is accommodated by the fin. The degree of flow modification due to blockage is enhanced by increasing the length of the fin. Under certain conditions, smaller vortices are formed between the fin and the top insulated wall. Viewing the minimum value of the stream function field as a measure of the strength of flow modification, it is shown that for high Rayleigh numbers the flow field is enhanced regardless of the fin’s length and position. This suggests that the extra heating mechanism outweighs the blockage effect for high Rayleigh numbers. By introducing a fin, the heat transfer capacity on the anchoring wall is always degraded, however heat transfer on the cold wall without the fin can be promoted for high Rayleigh numbers and with the fins placed closer to the insulated walls. A correlation among the mean Nu, Ra, fin’s length and its position is proposed.


Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


2020 ◽  
Vol 25 (3) ◽  
pp. 17-29
Author(s):  
Abdelkrim Bouras ◽  
Djedid Taloub ◽  
Zied Driss

AbstractThis paper deals with numerical investigation of a natural convective flow in a horizontal annular space between a heated square inner cylinder and a cold elliptical outer cylinder with a Newtonian fluid. Uniform temperatures are imposed along walls of the enclosure. The governing equations of the problem were solved numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq approximation. The effects of Geometry Ratio GR and Rayleigh numbers on fluid flow and heat transfer performance are investigated. The Rayleigh number is varied from 103 to 106. Throughout the study the relevant results are presented in terms of isotherms, and streamlines. From the results, we found that the increase in the Geometry Ratio B leads to an increase of the heat transfer coefficient. The heat transfer rate in the annulus is translated in terms of the average Nusselt numbers along the enclosure’s sides. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. The results for the streamlines, isotherms, local and average Nusselt numbers average Nusselt numbers are compared with previous works and show good agreement.


Sign in / Sign up

Export Citation Format

Share Document