scholarly journals Faculty Opinions recommendation of Progression from Feature-Specific Brain Activity to Hippocampal Binding during Episodic Encoding.

Author(s):  
Cheryl Grady ◽  
Jenny Rieck
2019 ◽  
Author(s):  
Sivaniya Subramaniapillai ◽  
Sricharana Rajagopal ◽  
Abdelhalim Elshiekh ◽  
Stamatoula Pasvanis ◽  
Elizabeth Ankudowich ◽  
...  

AbstractAging is associated with episodic memory decline and alterations in memory-related brain function. However, it remains unclear if age-related memory decline is associated with similar patterns of brain aging in women and men. In the current task fMRI study, we tested the hypothesis that there are sex differences in the effect of age and memory performance on brain activity during episodic encoding and retrieval of face-location associations (spatial context memory). Forty-one women and 41 men between the ages of 21 to 76 years participated in this study. Between-group multivariate partial least squares (PLS) analysis of the fMRI data was conducted to directly test for sex-group differences and similarities in age-related and performance-related patterns of brain activity. Our behavioural analysis indicated no significant sex differences in retrieval accuracy on the fMRI tasks. In relation to performance effects, we observed similarities and differences in how retrieval accuracy related to brain activity in women and men. Both sexes activated dorsal and lateral prefrontal cortex (PFC), inferior parietal cortex (IPC) and left parahippocampal gyrus (PHG) at encoding and this supported subsequent memory performance. However, there were sex differences in retrieval activity in these same regions and in lateral occipital-temporal and ventrolateral PFC. In relation to age effects, we observed sex differences in the effect of age on memory-related activity within PFC, IPC, PHG and lateral occipital-temporal cortices. Overall, our findings suggest that the neural correlates of age-related spatial context memory decline differ in women compared to men.


Cortex ◽  
2020 ◽  
Vol 129 ◽  
pp. 296-313 ◽  
Author(s):  
Abdelhalim Elshiekh ◽  
Sivaniya Subramaniapillai ◽  
Sricharana Rajagopal ◽  
Stamatoula Pasvanis ◽  
Elizabeth Ankudowich ◽  
...  

2019 ◽  
Author(s):  
Rose A. Cooper ◽  
Maureen Ritchey

ABSTRACTThe hallmark of episodic memory is recollecting multiple perceptual details tied to a specific spatial-temporal context. To remember an event, it is therefore necessary to integrate such details into a coherent representation during initial encoding. Here we tested how the brain encodes and binds multiple, distinct kinds of features in parallel, and how this process evolves over time during the event itself. We analyzed data from 27 human subjects (16 females, 11 males) who learned a series of objects uniquely associated with a color, a panoramic scene location, and an emotional sound while functional magnetic resonance imaging data were collected. By modeling how brain activity relates to memory for upcoming or just-viewed information, we were able to test how the neural signatures of individual features as well as the integrated event changed over the course of encoding. We observed a striking dissociation between early and late encoding processes: left inferior frontal and visuo-perceptual signals at the onset of an event tracked the amount of detail subsequently recalled and were dissociable based on distinct remembered features. In contrast, memory-related brain activity shifted to the left hippocampus toward the end of an event, which was particularly sensitive to binding item color and sound associations with spatial information. These results provide evidence of early, simultaneous feature-specific neural responses during episodic encoding that predict later remembering and suggest that the hippocampus integrates these features into a coherent experience at an event transition.SIGNIFICANCE STATEMENTUnderstanding and remembering complex experiences is crucial for many socio-cognitive abilities, including being able to navigate our environment, predict the future, and share experiences with others. Probing the neural mechanisms by which features become bound into meaningful episodes is a vital part of understanding how we view and reconstruct the rich detail of our environment. By testing memory for multimodal events, our findings show a functional dissociation between early encoding processes that engage lateral frontal and sensory regions to successfully encode event features, and later encoding processes that recruit hippocampus to bind these features together. These results highlight the importance of considering the temporal dynamics of encoding processes supporting multimodal event representations.


2000 ◽  
Vol 12 (1) ◽  
pp. 163-173 ◽  
Author(s):  
Lars Nyberg ◽  
Jonas Persson ◽  
Reza Habib ◽  
Endel Tulving ◽  
Anthony R. McIntosh ◽  
...  

Large-scale networks of brain regions are believed to mediate cognitive processes, including episodic memory. Analyses of regional differences in brain activity, measured by functional neuroimaging, have begun to identify putative components of these networks. To more fully characterize neurocognitive networks, however, it is necessary to use analytical methods that quantify neural network interactions. Here, we used positron emission tomography (PET) to measure brain activity during initial encoding and subsequent recognition of sentences and pictures. For each type of material, three recognition conditions were included which varied with respect to target density (0%, 50%, 100%). Analysis of large-scale activity patterns identified a collection of foci whose activity distinguished the processing of sentences vs. pictures. A second pattern, which showed strong prefrontal cortex involvement, distinguished the type of cognitive process (encoding or retrieval). For both pictures and sentences, the manipulation of target density was associated with minor activation changes. Instead, it was found to relate to systematic changes of functional connections between material-specific regions and several other brain regions, including medial temporal, right prefrontal and parietal regions. These findings provide evidence for large-scale neural interactions between material-specific and process-specific neural substrates of episodic encoding and retrieval.


2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


Sign in / Sign up

Export Citation Format

Share Document