Faculty Opinions recommendation of The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.

Author(s):  
Marina Wolf
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. Dumrongprechachan ◽  
R. B. Salisbury ◽  
G. Soto ◽  
M. Kumar ◽  
M. L. MacDonald ◽  
...  

AbstractThe vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gαq-coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain.


2000 ◽  
Vol 9 (2) ◽  
pp. 197-214 ◽  
Author(s):  
Alexandra Rödter ◽  
Christian Winkler ◽  
Madjid Samii ◽  
Guido Nikkhah

In this study sensorimotor behavioral changes were monitored in rats following bilateral 6-hydroxydopamine (6-OHDA) axon terminal lesion and uni- or bilateral implantation of embryonic dopaminergic (DA) micrografts. A total of 28 μg of 6-OHDA was distributed over four injection tracts in the dorsolateral part of the caudate-putamen (CPU) bilaterally followed 4 months later by the implantation of DA micrografts spread over seven implantation tracts placed within the denervated area. Bilaterally 6-OHDA-lesioned animals exhibited significantly reduced behavioral performance scores in tests of explorational and stepping behavior as well as in skilled forelimb use. However, in contrast to the established medial forebrain bundle (MFB) lesion model of PD, these animals showed a spontaneous recovery in the side falling and skilled forelimb behavior and no deficits in overnight locomotor activity at 6 months after the lesion. Unilateral DA micrografts elicited a substantial amphetamine-induced rotational bias contralateral to the graft, but led to a significant impairment of contralateral skilled forelimb use and reduced scores in overnight locomotor activity. Bilateral DA micrografts caused a significant, though partial, increase in explorational and backhand stepping behavior, but resulted also in a significant decrease in performance levels in overnight locomotor activity and skilled forelimb use on both paws. In conclusion, DA grafts placed ectopically in the CPU in the partial lesion model of PD result in a double innervation of the GABAergic striatal neurons, arising from the residual nigrostriatal DA projections of the host and from the graft-derived DA efferent fibers. These two DA fiber systems may indeed function in a cooperative and competitive manner depending on their respective and different afferent and efferent connections, which, in turn, may lead to positive or negative influences on basal ganglia function and behavioral performances. The different patterns of 6-OHDA lesion and transplant-induced behavioral changes demonstrated in the present study compared to the “classical” MFB lesion model of PD may thus provide further insights in the complex functional organization of the basal ganglia and, thereby, may help to further optimize restorative strategies for neurodegenerative diseases, such as Parkinson's disease.


2021 ◽  
Author(s):  
Vasin Dumrongprechachan ◽  
Giulia Soto ◽  
Matthew L MacDonald ◽  
Yevgenia Kozorovitskiy

The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell type-specific neuroproteome is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteome in the mouse brain. Using adenoassociated viral transduction, we express subcellular-localized APEX2 to map the proteome of the nucleus, cytosol, and cell membrane of Drd1 receptor-positive striatal neurons. We show that each APEX2 construct can differentially and rapidly biotinylate proteins in situ across various subcellular compartments, confirmed by imaging, electron microscopy, and mass spectrometry. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome in the mouse brain.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


Author(s):  
David L. Spector ◽  
Robert J. Derby

Studies in our laboratory are involved in evaluating the structural and functional organization of the mammalian cell nucleus. Since several major classes (U1, U2, U4/U6, U5) of small nuclear ribonucleoprotein particles (snRNPs) play a crucial role in the processing of pre-mRNA molecules, we have been interested in the localization of these particles within the cell nucleus. Using pre-embedding immunoperoxidase labeling combined with 3-dimensional reconstruction, we have recently shown that nuclear regions enriched in snRNPs form a reticular network within the nucleoplasm which extends between the nucleolar surface and the nuclear envelope. In the present study we were inte rested in extending these nuclear localizations using cell preparation techniques which avoid slow penetration of fixatives, chemical crosslinking of potential antigens and solvent extraction. CHOC 400 cells were cryofixed using a CF 100 ultra rapid cooling device (LifeCell Corp.). After cryofixation cells were molecular distillation dried, vapor osmicated, in filtra ted in 100% Spurr resin in vacuo and polymerized in molds a t 60°C. Using this procedure we were able to evaluate the distribution of snRNPs in resin embedded cells which had not been chemically fixed, incubated in cryoprotectants or extracted with solvents.


Sign in / Sign up

Export Citation Format

Share Document