scholarly journals Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. Dumrongprechachan ◽  
R. B. Salisbury ◽  
G. Soto ◽  
M. Kumar ◽  
M. L. MacDonald ◽  
...  

AbstractThe vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gαq-coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain.

2021 ◽  
Author(s):  
Vasin Dumrongprechachan ◽  
Giulia Soto ◽  
Matthew L MacDonald ◽  
Yevgenia Kozorovitskiy

The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell type-specific neuroproteome is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteome in the mouse brain. Using adenoassociated viral transduction, we express subcellular-localized APEX2 to map the proteome of the nucleus, cytosol, and cell membrane of Drd1 receptor-positive striatal neurons. We show that each APEX2 construct can differentially and rapidly biotinylate proteins in situ across various subcellular compartments, confirmed by imaging, electron microscopy, and mass spectrometry. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome in the mouse brain.


Function ◽  
2021 ◽  
Author(s):  
Tanya Sippy ◽  
Corryn Chaimowitz ◽  
Sylvain Crochet ◽  
Carl C H Petersen

Abstract The striatum integrates sensorimotor and motivational signals, likely playing a key role in reward-based learning of goal-directed behavior. However, cell type-specific mechanisms underlying reinforcement learning remain to be precisely determined. Here, we investigated changes in membrane potential dynamics of dorsolateral striatal neurons comparing naïve mice and expert mice trained to lick a reward spout in response to whisker deflection. We recorded from three distinct cell types: i) direct pathway striatonigral neurons, which express type 1 dopamine receptors; ii) indirect pathway striatopallidal neurons, which express type 2 dopamine receptors; and iii) tonically active, putative cholinergic, striatal neurons. Task learning was accompanied by cell type-specific changes in the membrane potential dynamics evoked by the whisker deflection and licking in successfully-performed trials. Both striatonigral and striatopallidal types of striatal projection neurons showed enhanced task-related depolarization across learning. Striatonigral neurons showed a prominent increase in a short latency sensory-evoked depolarization in expert compared to naïve mice. In contrast, the putative cholinergic striatal neurons developed a hyperpolarizing response across learning, driving a pause in their firing. Our results reveal cell type-specific changes in striatal membrane potential dynamics across the learning of a simple goal-directed sensorimotor transformation, helpful for furthering the understanding of the various potential roles of different basal ganglia circuits.


2020 ◽  
Author(s):  
Jing He ◽  
Michael Kleyman ◽  
Jianjiao Chen ◽  
Aydin Alikaya ◽  
Kathryn M. Rothenhoefer ◽  
...  

AbstractThe striatum is the neural interface between dopamine reward signals and cortico-basal ganglia circuits responsible for value assignments, decisions, and actions. Medium spiny neurons (MSNs) make up the vast majority of striatal neurons and are traditionally classified as two distinct types: direct- and indirect-pathway MSNs. The direct- and indirect-pathway model has been useful for understanding some aspects of striatal functions, but it accounts for neither the anatomical heterogeneity, nor the functional diversity of the striatum. Here, we use single nucleus RNA-sequencing and Fluorescent In-Situ Hybridization to explore MSN diversity in the Rhesus macaque striatum. We identified MSN subtypes that correspond to the major subdivisions of the striatum. These include dorsal striatum subtypes associated with striosome and matrix compartments, as well as ventral striatum subtypes associated with the shell of the nucleus accumbens. We also describe a cell type that is anatomically restricted to “Neurochemically Unique Domains in the Accumbens and Putamen (NUDAPs)”. Together, these results help to advance nonhuman primate studies into the genomics era. The identified cell types provide a comprehensive blueprint for investigating cell type-specific information processing, and the differentially expressed genes lay a foundation for achieving cell type-specific transgenesis in the primate striatum.


2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Houri Hintiryan ◽  
Ian Bowman ◽  
David L. Johnson ◽  
Laura Korobkova ◽  
Muye Zhu ◽  
...  

AbstractThe basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


2018 ◽  
Author(s):  
Caroline Fecher ◽  
Laura Trovò ◽  
Stephan A. Müller ◽  
Nicolas Snaidero ◽  
Jennifer Wettmarshausen ◽  
...  

AbstractMitochondria vary in morphology and function in different tissues, however little is known about their molecular diversity among cell types. To investigate mitochondrial diversity in vivo, we developed an efficient protocol to isolate cell type-specific mitochondria based on a new MitoTag mouse. We profiled the mitochondrial proteome of three major neural cell types in cerebellum and identified a substantial number of differential mitochondrial markers for these cell types in mice and humans. Based on predictions from these proteomes, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neurons. Moreover, we identified Rmdn3 as a major determinant of ER-mitochondria proximity in Purkinje cells. Our novel approach enables exploring mitochondrial diversity on the functional and molecular level in many in vivo contexts.


2017 ◽  
Author(s):  
Niels R. Ntamati ◽  
Meaghan Creed ◽  
Christian Lüscher

AbstractNeurons in the periaqueductal gray (PAG) modulate threat responses and nociception. Activity in the ventral tegmental area (VTA) on the other hand can cause reinforcement and aversion. While in many situations these behaviors are related, the anatomical substrate of a crosstalk between the PAG and VTA remains poorly understood. Here we describe the anatomical and electrophysiological organization of the VTA-projecting PAG neurons. Using rabies-based, cell type-specific retrograde tracing, we observed that PAG to VTA projection neurons are evenly distributed along the rostro-caudal axis of the PAG, but concentrated in its posterior and ventrolateral segments. Optogenetic projection targeting demonstrated that the PAG-to-VTA pathway is predominantly excitatory and targets similar proportions of Ih-expressing VTA DA and GABA neurons. Taken together, these results set the framework for functional analysis of the interplay between PAG and VTA in the regulation of reward and aversion.


Author(s):  
Samina Momtaz ◽  
Belen Molina ◽  
Luwanika Mlera ◽  
Felicia Goodrum ◽  
Jean M. Wilson

AbstractHuman cytomegalovirus (HCMV), while highly restricted for the human species, infects an unlimited array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies that incorporate viral products including dense bodies and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). Cells were fixed and labeled with antibodies against subcellular compartment markers and imaged using confocal and super-resolution microscopy. In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in endothelial cells were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that virus-containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. Virus containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non-canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with increased risk vascular disease. HCMV infects many cells in the human and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact the outcome of infection.


2016 ◽  
Vol 116 (3) ◽  
pp. 1261-1274 ◽  
Author(s):  
Amanda K. Kinnischtzke ◽  
Erika E. Fanselow ◽  
Daniel J. Simons

The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures.


Sign in / Sign up

Export Citation Format

Share Document