Faculty Opinions recommendation of Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size.

Author(s):  
Jürg Bahler
2020 ◽  
Vol 30 (7) ◽  
pp. 1217-1230.e7 ◽  
Author(s):  
Xi-Ming Sun ◽  
Anthony Bowman ◽  
Miles Priestman ◽  
Francois Bertaux ◽  
Amalia Martinez-Segura ◽  
...  

2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2021 ◽  
Vol 35 (3-4) ◽  
pp. 273-285
Author(s):  
Bin Zheng ◽  
Yuki Aoi ◽  
Avani P. Shah ◽  
Marta Iwanaszko ◽  
Siddhartha Das ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Livia Eiselleova ◽  
Viktor Lukjanov ◽  
Simon Farkas ◽  
David Svoboda ◽  
Karel Stepka ◽  
...  

The eukaryotic nucleus is a highly complex structure that carries out multiple functions primarily needed for gene expression, and among them, transcription seems to be the most fundamental. Diverse approaches have demonstrated that transcription takes place at discrete sites known as transcription factories, wherein RNA polymerase II (RNAP II) is attached to the factory and immobilized while transcribing DNA. It has been proposed that transcription factories promote chromatin loop formation, creating long-range interactions in which relatively distant genes can be transcribed simultaneously. In this study, we examined long-range interactions between the POU5F1 gene and genes previously identified as being POU5F1 enhancer-interacting, namely, CDYL, TLE2, RARG, and MSX1 (all involved in transcriptional regulation), in human pluripotent stem cells (hPSCs) and their early differentiated counterparts. As a control gene, RUNX1 was used, which is expressed during hematopoietic differentiation and not associated with pluripotency. To reveal how these long-range interactions between POU5F1 and the selected genes change with the onset of differentiation and upon RNAP II inhibition, we performed three-dimensional fluorescence in situ hybridization (3D-FISH) followed by computational simulation analysis. Our analysis showed that the numbers of long-range interactions between specific genes decrease during differentiation, suggesting that the transcription of monitored genes is associated with pluripotency. In addition, we showed that upon inhibition of RNAP II, long-range associations do not disintegrate and remain constant. We also analyzed the distance distributions of these genes in the context of their positions in the nucleus and revealed that they tend to have similar patterns resembling normal distribution. Furthermore, we compared data created in vitro and in silico to assess the biological relevance of our results.


1992 ◽  
Vol 70 (9) ◽  
pp. 792-799 ◽  
Author(s):  
Tak Yee Lam ◽  
Lawrence Chan ◽  
Patrick Yip ◽  
Chi-Hung Siu

cDNAs encoding the largest subunit of RNA polymerase II were isolated from a Dictyostelium cDNA library. A total of 2.9 kilobases (kb) of cDNA was sequenced and the amino acid sequence of the carboxyl-terminal half of the protein was deduced. Similar to other eukaryotic RNA polymerases II, the largest subunit of Dictyostelium RNA polymerase II contains a unique repetitive tail domain at its carboxyl-terminal region. It consists of 24 highly conserved heptapeptide repeats, with a consensus sequence of Tyr-Ser-Pro-Thr-Ser-Pro-Ser. In addition to the tail domain, five segments of the deduced primary structure show > 50% sequence identity with either yeast or mouse protein. RNA blots show that cDNA probes hybridized with a single mRNA species of ~ 6 kb and immunoblots using a monoclonal antibody raised against the tail domain lighted up a single protein band of 200 kilodaltons. Interestingly, expression of the largest subunit of RNA polymerase II appears to be under developmental regulation. The accumulation of its mRNA showed a 60% increase during the first 3 h of development, followed by a steady decrease during the next 6 h. Cells began to accumulate a higher level of the RNA polymerase II mRNA after 9 h of development. When cells were treated with low concentrations of cAMP pulses to stimulate the developmental process, the pattern of mRNA accumulation moved 3 h ahead, but otherwise remained similar to that of control cells.Key words: RNA polymerase, cDNA, sequence homology, gene expression, Dictyostelium.


2008 ◽  
Vol 369 (2) ◽  
pp. 449-455 ◽  
Author(s):  
Yutaka Hirose ◽  
Yu Iwamoto ◽  
Kazumi Sakuraba ◽  
Izumi Yunokuchi ◽  
Fumio Harada ◽  
...  

2013 ◽  
Vol 288 (1) ◽  
pp. 295-295
Author(s):  
Seung-Kyoon Kim ◽  
Inkyung Jung ◽  
Hosuk Lee ◽  
Keunsoo Kang ◽  
Mirang Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document