scholarly journals Faculty Opinions recommendation of Microglia phagocytose myelin sheaths to modify developmental myelination.

Author(s):  
Brad Zuchero
Keyword(s):  
Author(s):  
Frank A. Rawlins

Several speculations exist as to the site of incorporation of preformed molecules into myelin. The possibility that an autoradiographic analysis of cholesterol-1,2-H3 incorporation at very short times after injection might shed some light in the solution of that problem led to the present experiment.Cholesterol-1,2-H3 was injected intraperitoneally into 24 tenday old mice. The animals were then sacrificed at 10,20,30,40,60,90,120 and 180 min after the injection and the sciatic nerves were processed for electron microscope autoradiography. To analyze the grain distribution in the autoradiograms of cross and longitudinal sections from each sciatic nerve myelin sheaths were subdivided into three compartments named: outer 1/3, middle 1/3 and inner 1/3 compartments.It was found that twenty min. after the injection of cholesterol -1.2-H3 (Figs. 1 and 2), 55% of the total number of grains (t.n.g) found in myelin were within the outer 1/3 compartment, 9% were within the middle 1/3 and 36% within the inner 1/3 compartment


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cody L. Call ◽  
Dwight E. Bergles

ABSTRACTAxons in the cerebral cortex show a broad range of myelin coverage. Oligodendrocytes establish this pattern by selecting a cohort of axons for myelination; however, the distribution of myelin on distinct neurons and extent of internode replacement after demyelination remain to be defined. Here we show that myelination patterns of seven distinct neuron subtypes in somatosensory cortex are influenced by both axon diameter and neuronal identity. Preference for myelination of parvalbumin interneurons was preserved between cortical areas with varying myelin density, suggesting that regional differences in myelin abundance arises through local control of oligodendrogenesis. By imaging loss and regeneration of myelin sheaths in vivo we show that myelin distribution on individual axons was altered but overall myelin content on distinct neuron subtypes was restored. Our findings suggest that local changes in myelination are tolerated, allowing regenerated oligodendrocytes to restore myelin content on distinct neurons through opportunistic selection of axons.


1996 ◽  
Vol 54 (2) ◽  
pp. 331-334 ◽  
Author(s):  
L. A. V Peireira ◽  
M. A. Cruz-Höfling ◽  
M. S. J. Dertkigil ◽  
D. L. Graça

The integrity of myelin sheaths is maintained by oligodendrocytes and Schwann cells respectively in the central nervous system (CNS) and in the peripheral nervous system. The process of demyelination consisting of the withdrawal of myelin sheaths from their axons is a characteristic feature of multiple sclerosis, the most common human demyelinating disease. Many experimental models have been designed to study the biology of demyelination and remyelination (repair of the lost myelin) in the CNS, due to the difficulties in studying human material. In the ethidium bromide (an intercalating gliotoxic drug) model of demyelination, CNS remyelination may be carried out by surviving oligodendrocytes and/or by cells differentiated from the primitive cell lines or either by Schwann cells that invade the CNS. However, some factors such as the age of the experimental animals, intensity and time of exposure to the intercalating chemical and the topography of the lesions have marked influence on the repair of the tissue.


2013 ◽  
Vol 25 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Tim Czopka ◽  
Charles ffrench-Constant ◽  
David A. Lyons
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document