scholarly journals Faculty Opinions recommendation of A Weak Link with Actin Organizes Tight Junctions to Control Epithelial Permeability.

Author(s):  
Markus Engstler ◽  
Brooke Morriswood
2020 ◽  
Vol 54 (6) ◽  
pp. 792-804.e7 ◽  
Author(s):  
Brian Belardi ◽  
Tiama Hamkins-Indik ◽  
Andrew R. Harris ◽  
Jeongmin Kim ◽  
Ke Xu ◽  
...  

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S30-S30
Author(s):  
Isabelle Hébert-Milette ◽  
Chloé Lévesque ◽  
Guy Charron ◽  
John Rioux

Abstract Introduction Intestinal permeability is increased in unaffected 1st degree relatives of patients with inflammatory bowel disease (IBD), and is considered a risk factor for the development of IBD, likely increasing the interactions between intestinal microorganisms and the immune system. We recently reported that C1orf106, a gene located within a genomic region associated with IBD, regulates epithelial permeability. We further demonstrated that a rare coding variant within C1orf106 (p.Y333F) decreases protein stability and that lower levels of C1orf106 protein leads altered stability of adherens junctions (AJ) and to an increase in epithelial permeability. Hypothesis In addition to altering AJ, we believe that C1orf106 is also involved in the regulation of tight junction (TJ) formation, which also impacts epithelial permeability. Objectives The objectives of the project are to (a) validate the impact of C1orf106 on tight junctions and (b) verify the impact of C1orf106 IBD-associated variants on intestinal barrier integrity. Results We observed that knocking down the expression of C1orf106 in Caco-2 cells leads to a number of phenotypes in human epithelial monolayer (2D) and spheroid (3D) cultures that are associated with alterations in TJs. Specifically, when studying the dynamic reformation of TJ in 2D cultures after transient withdrawal of calcium, which is required for TJ stability, we observed that lower levels of C1orf106 resulted in (1) decreased recovery of barrier function as measured by transepithelial electrical resistance (TEER); (2) an alteration of tight junction protein localization; and (3) thickening of the circumferential actin belt. Moreover, in 3D cultures, we observed an altered spheroid formation associated with impaired epithelial polarization. In addition, our preliminary studies of human induced pluripotent stem cell (hiPSC)-derived epithelial cultures support that Y333F heterozygotes also have altered structure and function of their tight junctions. Conclusion Our observations indicate an important role of C1orf106 in apical junctional complex (AJC) formation likely mediated by a regulation of the circumferential actin belt. This can affect other functions of AJC, like the establishment of cell polarity. AJC formation is important for epithelial repair after an injury and its dysregulation impairs the formation of an impermeable epithelial barrier, which likely facilitates the passage of microorganisms and the induction and maintenance of intestinal inflammation.


1992 ◽  
Vol 262 (6) ◽  
pp. C1403-C1410 ◽  
Author(s):  
A. D. Marmorstein ◽  
K. H. Mortell ◽  
D. R. Ratcliffe ◽  
E. B. Cramer

An epithelial permeability factor (EPF) in human serum lowered, within 1 h, the transepithelial electrical resistance and opened the tight junctions of a cultured kidney epithelium (Madin-Darby canine kidney) when it came in contact with the basolateral surface of the kidney epithelium. Size-exclusion chromatography of serum or heat-inactivated serum resolved seven peaks of EPF activity (approximately 15, approximately 30, approximately 45, approximately 60, approximately 120, and approximately 240 kDa and greater than 240 kDa) with 65% of the activity at approximately 45, approximately 60, and approximately 120 kDa. Heat inactivation, which had no effect on total activity, caused a significant decrease in the activity at 120 kDa and an equivalent rise in activity at 45 kDa. Although acid charcoal extraction or lectin affinity chromatography did not remove activity, EPF activity was eliminated by pepsin. Heat-inactivated serum or fractions containing EPF had no effect on ZO-1 localization but did cause a dose-dependent focal condensation of the perijunctional actin ring at sites where three or more cells were in contact. These data suggest that EPF is a protein that appears to form multimers that interact with the basolateral surface of the epithelium and cause constriction of the cytoskeleton and an increase in permeability at specific sites along the tight junction.


2006 ◽  
Vol 84 (10) ◽  
pp. 1043-1050 ◽  
Author(s):  
Alex C. Chin ◽  
Andrew N. Flynn ◽  
Jason P. Fedwick ◽  
Andre G. Buret

The mechanisms responsible for microbially induced epithelial apoptosis and increased intestinal permeability remain unclear. This study assessed whether purified bacterial lipopolysaccharide (LPS) increases epithelial apoptosis and permeability and whether these changes are dependent on caspase-3 activation. In nontumorigenic epithelial monolayers, Escherichia coli O26:B6 LPS increased apoptosis, as shown by nuclear breakdown, caspase-3 activation, and PARP cleavage, and induced disruption of tight junctional ZO-1. Apical, but not basolateral, exposure to LPS increased epithelial permeability. Addition of a caspase-3 inhibitor abolished the effects of LPS. The findings describe a novel mechanism whereby apical LPS may disrupt epithelial tight junctional ZO-1 and barrier function in a caspase-3-dependent fashion.


2020 ◽  
Vol 168 (4) ◽  
pp. 407-415
Author(s):  
Minagi Mukaiyama ◽  
Takeo Usui ◽  
Yoko Nagumo

Abstract Activation of the transient receptor potential A1 channel (TRPA1) by electrophilic agonists was reported to induce the opening of tight junctions (TJs). Because compounds that increase TJ permeability can be paracellular permeability enhancers, we investigated the effect of non-electrophilic TRPA1 activators, including food ingredients (menthol and carvacrol) and medication (clotrimazole), on epithelial permeability. We show that all three compounds induced increase of the permeability of fluorescein isothiocyanate-conjugated dextran (4 kDa) and decrease of transepithelial electrical resistance, accompanied by Ca2+ influx and cofilin activation in epithelial MDCK II monolayers. These phenotypes were attenuated by pretreatment of a TRPA1 antagonist, suggesting TRPA1-mediated opening of TJs. These results suggest that non-electrophilic TRPA1 activators with established safety can be utilized to regulate epithelial barriers.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Alí Citalán‐Madrid ◽  
Alexander García‐Ponce ◽  
Hilda Vargas‐Robles ◽  
Abigail Betanzos ◽  
Klemens Rottner ◽  
...  

2019 ◽  
Author(s):  
Brian Belardi ◽  
Tiama Hamkins-Indik ◽  
Andrew R. Harris ◽  
Daniel A. Fletcher

SUMMARYIn vertebrates, epithelial permeability is regulated by the tight junction (TJ) formed by specialized adhesive membrane proteins, adaptor proteins, and the actin cytoskeleton. Despite the TJ’s critical physiological role, a molecular-level understanding of how TJ assembly sets the permeability of epithelial tissue is lacking. Here, we identify a 28-amino acid sequence in the TJ adaptor protein ZO-1 that is responsible for actin binding and show that this interaction is essential for TJ permeability. In contrast to the strong interactions at the adherens junction, we find that the affinity between ZO-1 and actin is surprisingly weak, and we propose a model based on kinetic trapping to explain how affinity could affect TJ assembly. Finally, by tuning the affinity of ZO-1 to actin, we demonstrate that epithelial monolayers can be engineered with a spectrum of permeabilities, which points to a new target for treating transport disorders and improving drug delivery.


Sign in / Sign up

Export Citation Format

Share Document