Faculty Opinions recommendation of Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins.

Author(s):  
Xueliang Zhu
Author(s):  
Yulia Steblyanko ◽  
Girish Rajendraprasad ◽  
Mariana Osswald ◽  
Susana Eibes ◽  
Stephan Geley ◽  
...  

AbstractMitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. We show that both of these activities work in coordination with MT-crosslinking motors kinesin-5/EG5 and kinesin-12/KIF15. Our data further indicate that MT-flux driving force is transmitted from non-KT MTs to KT-MTs via MT-coupling by HSET and NuMA. Moreover, we found that MT-flux rate correlates with spindle size and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we revealed that flux is required to counteract the kinesin 13/MCAK-dependent MT-depolymerization to regulate spindle length. Thus, our study demonstrates that MT-flux in human cells is driven by the coordinated action of four kinesins, and is required to regulate mitotic spindle size in response to MCAK-mediated MT-depolymerizing activity at KTs.


2020 ◽  
Vol 39 (23) ◽  
Author(s):  
Yulia Steblyanko ◽  
Girish Rajendraprasad ◽  
Mariana Osswald ◽  
Susana Eibes ◽  
Ariana Jacome ◽  
...  

2021 ◽  
Author(s):  
Patrik Risteski ◽  
Mihaela Jagrić ◽  
Iva M. Tolić

ABSTRACTChromosome alignment at the spindle equator during metaphase is the most remarkable feature of mitosis, which promotes proper chromosome segregation and depends on the forces exerted at the plus end of kinetochore microtubules and polar ejection forces. However, forces arising from lateral mechanical coupling of kinetochore fibers with non-kinetochore microtubules play a role in chromosome alignment, but the mechanism is unclear. Here we develop a speckle microscopy assay to measure the poleward flux of individual microtubules in spindles of human cells and show that bridging microtubules slide apart and undergo poleward flux at a higher rate than kinetochore microtubules. Depletion of the microtubule coupler NuMa increased the difference in the flux velocity of kinetochore and bridging microtubules, suggesting that sliding forces from the bridging fiber are transmitted largely through NuMa onto the associated kinetochore fibers. Depletions of Kif18A/kinesin-8, Kif4A/kinesin-4, as well as double depletions of Kif18A together with Kif4A or Kif18A together with the crosslinker of antiparallel microtubules PRC1 increased the flux velocity of kinetochore fibers up to the velocity of bridging fibers, due to the increased coupling resulting from the extended antiparallel overlap regions. We found severe kinetochore misalignment after double Kif18A and Kif4A as well as Kif18A and PRC1 depletions compared to a single Kif18A depletion, suggesting that forces within the bridging fiber have a centering effect on the kinetochores. We propose that lateral length-dependent sliding forces that the bridging fiber exerts onto kinetochore fibers drive the movement of kinetochores towards the spindle center, thereby promoting chromosome alignment.


2002 ◽  
Vol 72 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Kei-Ichi Hirai ◽  
Jie-Hong Pan ◽  
Ying-Bo Shui ◽  
Eriko Simamura ◽  
Hiroki Shimada ◽  
...  

The possible protection of cultured human cells from acute dioxin injury by antioxidants was investigated. The most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), caused vacuolization of the smooth endoplasmic reticulum and Golgi apparatus in cultured human conjunctival epithelial cells and cervical cancer cells. Subsequent nuclear damage included a deep irregular indentation resulting in cell death. A dosage of 30–40 ng/mL TCDD induced maximal intracellular production of H2O2 at 30 minutes and led to severe cell death (0–31% survival) at two hours. A dose of 1.7 mM alpha-tocopherol or 1 mM L-dehydroascorbic acid significantly protected human cells against acute TCDD injuries (78–97% survivals), but vitamin C did not provide this protection. These results indicate that accidental exposure to fatal doses of TCDD causes cytoplasmic free radical production within the smooth endoplasmic reticular systems, resulting in severe cytotoxicity, and that vitamin E and dehydroascorbic acid can protect against TCDD-induced cell damage.


2003 ◽  
Vol 104 ◽  
pp. 289-292 ◽  
Author(s):  
R. Ortega ◽  
B. Fayard ◽  
M. Salomé ◽  
G. Devès ◽  
J. Susini

2004 ◽  
Vol 36 (05) ◽  
Author(s):  
U Henning ◽  
K Krieger ◽  
S Loeffler ◽  
A Klimke
Keyword(s):  

2015 ◽  
Author(s):  
Gerard Ruiz Babot ◽  
Irene Hadjidemetriou ◽  
Sharon Jane Ajodha ◽  
David Taylor ◽  
Norman Taylor ◽  
...  

2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Srikant Sarangi

This special issue of Communication & Medicine is dedicated to the theme of teamwork and team talk in healthcare delivery.


Sign in / Sign up

Export Citation Format

Share Document