scholarly journals Calcium spikes accompany cleavage furrow ingression and cell separation during fission yeast cytokinesis

2021 ◽  
Vol 32 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Abhishek Poddar ◽  
Oumou Sidibe ◽  
Aniruddha Ray ◽  
Qian Chen

Calcium rises transiently at the division plane during cytokinesis of embryonic cells, but the conservation and function of such calcium transients remain unclear. We discovered similar calcium spikes during fission yeast cytokinesis, and demonstrated that calcium promotes contractile ring constriction and daughter cell integrity.

2020 ◽  
Author(s):  
Abhishek Poddar ◽  
Oumou Sidibe ◽  
Aniruddha Ray ◽  
Qian Chen

AbstractThe role of calcium signaling during cytokinesis has long remained ambiguous. The studies of embryonic cell division discovered that calcium concentration increases transiently at the division plane just before the cleavage furrow ingression, leading to the hypothesis that these calcium transients trigger the contractile ring constriction. However, such calcium transients have only been found in animal embryos and their function remains controversial. Here we explored cytokinetic calcium transients in the model organism fission yeast. We adopted GCaMP, a genetically encoded calcium indicator, to determine the intracellular calcium level. We validated GCaMP as a highly sensitive calcium indicator which allowed us to capture the calcium transients stimulated by osmotic shocks. To identify calcium transients during cytokinesis, we first identified a correlation between the intracellular calcium level and cell division. Next, we discovered calcium spikes at the start of the cleavage furrow ingression and the end of the cell separation using time-lapse microscopy to. Inhibition of these calcium spikes slowed down the furrow ingression and led to frequent lysis of the daughter cells. We conclude that like the larger animal embryos fission yeast triggers cytokinetic calcium transients which promote the ring constriction and daughter cell integrity (194).Highlight summary for TOCCalcium rises transiently at the division plane during embryonic cell cytokinesis, but the conservation and function of such calcium transients remain unclear. We identified similar calcium spikes during fission yeast cytokinesis and demonstrated that these spikes promote the contractile ring constriction and the daughter cell integrity (257).


2012 ◽  
Vol 23 (7) ◽  
pp. 1181-1195 ◽  
Author(s):  
Yanfang Ye ◽  
I-Ju Lee ◽  
Kurt W. Runge ◽  
Jian-Qiu Wu

Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.


2012 ◽  
Vol 23 (13) ◽  
pp. 2433-2444 ◽  
Author(s):  
Luther W. Pollard ◽  
Masayuki Onishi ◽  
John R. Pringle ◽  
Matthew Lord

Cell morphogenesis is a complex process that relies on a diverse array of proteins and pathways. We have identified a transglutaminase-like protein (Cyk3p) that functions in fission yeast morphogenesis. The phenotype of a cyk3 knockout strain indicates a primary role for Cyk3p in cytokinesis. Correspondingly, Cyk3p localizes both to the actomyosin contractile ring and the division septum, promoting ring constriction, septation, and subsequent cell separation following ring disassembly. In addition, Cyk3p localizes to polarized growth sites and plays a role in cell shape determination, and it also appears to contribute to cell integrity during stationary phase, given its accumulation as dynamic puncta at the cortex of such cells. Our results and the conservation of Cyk3p across fungi point to a role in cell wall synthesis and remodeling. Cyk3p possesses a transglutaminase domain that is essential for function, even though it lacks the catalytic active site. In a wider sense, our work illustrates the physiological importance of inactive members of the transglutaminase family, which are found throughout eukaryotes. We suggest that the proposed evolution of animal transglutaminase cross-linking activity from ancestral bacterial thiol proteases was accompanied by the emergence of a subclass whose function does not depend on enzymatic activity.


2003 ◽  
Vol 160 (7) ◽  
pp. 1083-1092 ◽  
Author(s):  
Ana Berlin ◽  
Anne Paoletti ◽  
Fred Chang

Septins are filament-forming proteins with a conserved role in cytokinesis. In the fission yeast Schizosaccharomyces pombe, septin rings appear to be involved primarily in cell–cell separation, a late stage in cytokinesis. Here, we identified a protein Mid2p on the basis of its sequence similarity to S. pombe Mid1p, Saccharomyces cerevisiae Bud4p, and Candida albicans Int1p. Like septin mutants, mid2Δ mutants had delays in cell–cell separation. mid2Δ mutants were defective in septin organization but not contractile ring closure or septum formation. In wild-type cells, septins assembled first during mitosis in a single ring and during septation developed into double rings that did not contract. In mid2Δ cells, septins initially assembled in a single ring but during septation appeared in the cleavage furrow, forming a washer or disc structure. FRAP studies showed that septins are stable in wild-type cells but exchange 30-fold more rapidly in mid2Δ cells. Mid2p colocalized with septins and required septins for its localization. A COOH-terminal pleckstrin homology domain of Mid2p was required for its localization and function. No genetic interactions were found between mid2 and the related gene mid1. Thus, these studies identify a new factor responsible for the proper stability and function of septins during cytokinesis.


2019 ◽  
Vol 30 (15) ◽  
pp. 1791-1804 ◽  
Author(s):  
Zachary Morris ◽  
Debatrayee Sinha ◽  
Abhishek Poddar ◽  
Brittni Morris ◽  
Qian Chen

Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing transient receptor potential channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with autosomal polycystic kidney disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures, and hyperactivated mitogen-activated protein kinase signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with misregulated turgor pressure. Finally, the pkd2 mutant exhibits strong genetic interactions with two mutants of the septation initiation network pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.


2005 ◽  
Vol 16 (5) ◽  
pp. 2313-2324 ◽  
Author(s):  
David R. Kovar ◽  
Jian-Qiu Wu ◽  
Thomas D. Pollard

Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.


2014 ◽  
Vol 25 (13) ◽  
pp. 1946-1957 ◽  
Author(s):  
John W. Goss ◽  
Sunhee Kim ◽  
Hannah Bledsoe ◽  
Thomas D. Pollard

Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes—precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.


2018 ◽  
Author(s):  
Zachary Morris ◽  
Debatrayee Sinha ◽  
Abhishek Poddar ◽  
Brittni Morris ◽  
Qian Chen

AbstractForce plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force-sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing TRP channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with Autosomal Polycystic Kidney Disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures and hyper-activated MAPK signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with mis-regulated turgor pressure. Lastly, the pkd2 mutant exhibits strong genetic interactions with two mutants of the SIN pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.Highlight summary for TOCFission yeast TRP channel Pkd2p is the homologue of human polycystins. The pkd2 mutant exhibits defects in the contractile ring closure and cell separation during cytokinesis. This essential protein localizes to the cleavage furrow where it likely regulates osmotic homeostasis during cytokinesis.


2017 ◽  
Vol 28 (9) ◽  
pp. 1258-1270 ◽  
Author(s):  
Yelena Zhuravlev ◽  
Sophia M. Hirsch ◽  
Shawn N. Jordan ◽  
Julien Dumont ◽  
Mimi Shirasu-Hiza ◽  
...  

Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document