scholarly journals Faculty Opinions recommendation of Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties.

Author(s):  
Shuli Niu
2021 ◽  
Vol 7 (32) ◽  
pp. eabe3596
Author(s):  
Shuqi Qin ◽  
Dan Kou ◽  
Chao Mao ◽  
Yongliang Chen ◽  
Leiyi Chen ◽  
...  

Temperature sensitivity (Q10) of permafrost carbon (C) release upon thaw is a vital parameter for projecting permafrost C dynamics under climate warming. However, it remains unclear how mineral protection interacts with microbial properties and intrinsic recalcitrance to affect permafrost C fate. Here, we sampled permafrost soils across a 1000-km transect on the Tibetan Plateau and conducted two laboratory incubations over 400- and 28-day durations to explore patterns and drivers of permafrost C release and its temperature response after thaw. We find that mineral protection and microbial properties are two types of crucial predictors of permafrost C dynamics upon thaw. Both high C release and Q10 are associated with weak organo-mineral associations but high microbial abundances and activities, whereas high microbial diversity corresponds to low Q10. The attenuating effects of mineral protection and the dual roles of microbial properties would make the permafrost C-climate feedback more complex than previously thought.


2013 ◽  
Vol 675 ◽  
pp. 280-283
Author(s):  
Qiu Xiang Tian ◽  
Hong Bo He ◽  
Xu Dong Zhang

The mineralization of soil carbon materials potentially alters carbon release from soil and the atmospheric carbon concentration in engineering. Despite this central role in the decomposition of soil carbon materials, few studies have been conducted on how climate warming affects this carbon emissions and then response in return back. To study this, five soils were incubated in 5, 15, 25 °C for one month. Soil shifted to warming condition slowed down the increasing rate of decomposition causing by higher temperature. Furthermore, raising the soil environment temperature to 25 °C weakened the temperature sensitivity of the decomposition of these carbon materials, and the temperature sensitivity enhanced at lower temperature. This “thermal adaptation” of carbon material would potentially slow down carbon loss which accelerated by climate change technically.


Geoderma ◽  
2014 ◽  
Vol 214-215 ◽  
pp. 168-176 ◽  
Author(s):  
Waqar Ahmad ◽  
Balwant Singh ◽  
Feike A. Dijkstra ◽  
Ram C. Dalal ◽  
Peter Geelan-Small

2016 ◽  
Vol 30 (9) ◽  
pp. 1310-1323 ◽  
Author(s):  
Jinzhi Ding ◽  
Leiyi Chen ◽  
Beibei Zhang ◽  
Li Liu ◽  
Guibiao Yang ◽  
...  

2016 ◽  
Vol 113 (14) ◽  
pp. 3832-3837 ◽  
Author(s):  
Mary A. Heskel ◽  
Odhran S. O’Sullivan ◽  
Peter B. Reich ◽  
Mark G. Tjoelker ◽  
Lasantha K. Weerasinghe ◽  
...  

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7721
Author(s):  
Chaoxiang Yuan ◽  
Guiqing Zhu ◽  
Shuangna Yang ◽  
Gang Xu ◽  
Yingyun Li ◽  
...  

Background Soil respiration (RS) plays an important role in the concentration of atmospheric CO2 and thus in global climate patterns. Due to the feedback between RS and climate, it is important to investigate RS responses to climate warming. Methods A soil warming experiment was conducted to explore RS responses and temperature sensitivity (Q10) to climate warming in subtropical forests in Southwestern China, and infrared radiators were used to simulate climate warming. Results Warming treatment increased the soil temperature and RS value by 1.4 °C and 7.3%, respectively, and decreased the soil water level by 4.2% (%/%). Both one- and two-factor regressions showed that warming increased the Q10 values by 89.1% and 67.4%, respectively. The effects of water on Q10show a parabolic relationship to the soil water sensitivity coefficient. Both RS and Q10 show no acclimation to climate warming, suggesting that global warming will accelerate soil carbon release.


Sign in / Sign up

Export Citation Format

Share Document