scholarly journals Faculty Opinions recommendation of Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy.

Author(s):  
Vojo Deretic
2021 ◽  
Author(s):  
Vinay Eapen ◽  
Sharan Swarup ◽  
Melisa J Hoyer ◽  
Joao A Paulo ◽  
J Wade Harper

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding Galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their inter-relationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and Galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosomal proteome remodeling during lysophagy. Among proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both Hela cells and induced neurons (iNeurons). While the related receptor OPTN can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


2018 ◽  
Vol 4 (11) ◽  
pp. eaav0443 ◽  
Author(s):  
J.-M. Heo ◽  
A. Ordureau ◽  
S. Swarup ◽  
J. A. Paulo ◽  
K. Shen ◽  
...  

Removal of damaged mitochondria is orchestrated by a pathway involving the PINK1 kinase and the PARKIN ubiquitin ligase. Ubiquitin chains assembled by PARKIN on the mitochondrial outer membrane recruit autophagy cargo receptors in complexes with TBK1 protein kinase. While TBK1 is known to phosphorylate cargo receptors to promote ubiquitin binding, it is unknown whether TBK1 phosphorylates other proteins to promote mitophagy. Using global quantitative proteomics, we identified S72 in RAB7A, a RAB previously linked with mitophagy, as a dynamic target of TBK1 upon mitochondrial depolarization. TBK1 directly phosphorylates RAB7AS72, but not several other RABs known to be phosphorylated on the homologous residue by LRRK2, in vitro, and this modification requires PARKIN activity in vivo. Interaction proteomics using nonphosphorylatable and phosphomimetic RAB7A mutants revealed loss of association of RAB7AS72E with RAB GDP dissociation inhibitor and increased association with the DENN domain–containing heterodimer FLCN-FNIP1. FLCN-FNIP1 is recruited to damaged mitochondria, and this process is inhibited in cells expressing RAB7AS72A. Moreover, nonphosphorylatable RAB7A failed to support efficient mitophagy, as well as recruitment of ATG9A-positive vesicles to damaged mitochondria. These data reveal a novel function for TBK1 in mitophagy, which parallels that of LRRK2-mediated phosphorylation of the homologous site in distinct RABs to control membrane trafficking.


2021 ◽  
Author(s):  
Mengwen Zhang ◽  
Jason M. Berk ◽  
Adrian B. Mehrtash ◽  
Jean Kanyo ◽  
Mark Hochstrasser

AbstractProtein ubiquitylation is an important post-translational modification affecting an wide range of cellular processes. Due to the low abundance of ubiquitylated species in biological samples, considerable effort has been spent on developing methods to purify and detect ubiquitylated proteins. We have developed and characterized a novel tool for ubiquitin detection and purification based on OtUBD, a high-affinity ubiquitin-binding domain derived from an Orientia tsutsugamushi deubiquitylase. We demonstrate that OtUBD can be used to purify both monoubiquitylated and polyubiquitylated substrates from yeast and human tissue culture samples and compare their performance with existing methods. Importantly, we found conditions for either selective purification of covalently ubiquitylated proteins or co-isolation of both ubiquitylated proteins and their interacting proteins. As a proof-of-principle for these newly developed methods, we profiled the ubiquitylome and ubiquitin-associated proteome of the yeast Saccharomyces cerevisiae. Combining OtUBD affinity purification with quantitative proteomics, we identified potential substrates for E3 ligases Bre1 and Pib1. OtUBD provides a versatile, efficient, and economical tool for ubiquitin researchers with specific advantages over other methods, such as in detecting monoubiquitylation or ubiquitin linkages to noncanonical sites.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vinay V Eapen ◽  
Sharan Swarup ◽  
Melissa J Hoyer ◽  
Joao A Paulo ◽  
J Wade Harper

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


Sign in / Sign up

Export Citation Format

Share Document