induced neurons
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 52)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Erwan Lambert ◽  
Orthis Saha ◽  
Bruna Soares Landeira ◽  
Ana Raquel Melo de Farias ◽  
Xavier Hermant ◽  
...  

AbstractThe Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iris Marchal ◽  
Baris Tursun

Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vinay V Eapen ◽  
Sharan Swarup ◽  
Melissa J Hoyer ◽  
Joao A Paulo ◽  
J Wade Harper

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


Author(s):  
Zhen Chen ◽  
Yuhang Huang ◽  
Chaorong Yu ◽  
Qing Liu ◽  
Cui Qiu ◽  
...  

In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.


2021 ◽  
Author(s):  
Vinay Eapen ◽  
Harper not provided not provided JW ◽  
Melissa Hoyer ◽  
sharan_swarup not provided

Lysophagy-the selective elimination of damaged lysosomes by the autophagy pathway-is a critical housekeeping mechanism in cells. This pathway surveils lysosomes and selectively demarcates terminally damaged lysosomes for elimination. Among the most upstream signaling proteins in this pathway are the glycan binding proteins-Galectins-which recognize N and O linked glycan chains on the luminal side of transmembrane lysosomal proteins. These glycosyl modifications are only accessible to galectin proteins upon extensive lysosomal membrane rupture and serve as a sensitive measure of lysosomal damage and eventual clearance by selective autophagy. Indeed, prior work has shown that immunofluorescence of Galectin-3 serves as a convenient proxy for lysophagic flux in tissue culture cells (Aits et al., 2015; Maejima et al., 2013). Here we describe our method for monitoring GFP positive RFP-GFP-galectin-3 GFP positive puncta clearance as a proxy for turnover of damaged lysosomes via immunofluorescence and confocal imaging.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4718
Author(s):  
Zhiyan Hao ◽  
Sen Wang ◽  
Kun Zhang ◽  
Jiajia Zhou ◽  
Dichen Li ◽  
...  

Implantable nerve electrodes, as a bridge between the brain and external devices, have been widely used in areas such as brain function exploration, neurological disease treatment and human–computer interaction. However, the mechanical properties mismatch between the electrode material and the brain tissue seriously affects the stability of electrode signal acquisition and the effectiveness of long-term service in vivo. In this study, a modified neuroelectrode was developed with conductive biomaterials. The electrode has good biocompatibility and a gradient microstructure suitable for cell growth. Compared with metal electrodes, bioelectrodes not only greatly reduced the elastic modulus (<10 kpa) but also increased the conductivity of the electrode by 200 times. Through acute electrophysiological analysis and a 12-week chronic in vivo experiment, the bioelectrode clearly recorded the rat’s brain electrical signals, effectively avoided the generation of glial scars and induced neurons to move closer to the electrode. The new conductive biomaterial electrodes developed in this research make long-term implantation of cortical nerve electrodes possible.


2021 ◽  
Author(s):  
Vinay Eapen ◽  
Sharan Swarup ◽  
Melisa J Hoyer ◽  
Joao A Paulo ◽  
J Wade Harper

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding Galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their inter-relationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and Galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosomal proteome remodeling during lysophagy. Among proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both Hela cells and induced neurons (iNeurons). While the related receptor OPTN can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


2021 ◽  
Author(s):  
Panos Theofilas ◽  
Chao Wang ◽  
David Butler ◽  
Dulce O. Morales ◽  
Cathrine Petersen ◽  
...  

Abstract Background: Tau post-translational modifications (PTMs) are associated with progressive tau accumulation and neuronal loss in tauopathies, including forms of frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). Tau proteolysis by caspases, including caspase-6, represents an understudied PTM that may increase neurotoxicity and tau self-aggregation. Methods: To elucidate the presence and temporal course of caspase activation, tau cleavage, and neuronal death, we generated two novel epitope (neoepitope) monoclonal antibodies (mAbs) against caspase-6 tau proteolytic sites. We evaluated tau cleavage and response to apoptotic stress in cortical neurons derived from induced pluripotent stem cells (iPSCs) with frontotemporal dementia (FTD)-causing V337M MAPT mutation. We tested the neuroprotective effect of caspase inhibitors in the induced neurons. We also demonstrated the presence of the tau neoepitopes in postmortem brains from an individual with FTD (V337M MAPT) and an individual with AD, compared to a healthy control.Results: FTLD V337M MAPT and AD postmortem brains showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau and phosphorylated (p)-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by inhibition of effector caspases.Conclusions: Culturing iPSC-derived neurons for three months exposes age-related tau pathologies, including caspase-mediated cleavage, that are also observed in human postmortem brains with abnormal tau deposition. Neoepitope antibodies to caspase-cleaved tau may serve as biomarkers of tau pathology. Furthermore, caspases could be viable therapeutic targets for tau pathogenesis in FTLD and other tauopathies.


2021 ◽  
Author(s):  
Janelle Drouin-Ouellet ◽  
Karolina Pircs ◽  
Emilie M. Legault ◽  
Marcella Birtele ◽  
Fredrik Nilsson ◽  
...  

AbstractUnderstanding the pathophysiology of Parkinson’s disease has been hampered by the lack of models that recapitulate all the critical factors underlying its development. Here, we generated functional induced dopaminergic neurons (iDANs) that were directly reprogrammed from adult human dermal fibroblasts of patients with idiopathic Parkinson’s disease to investigate diseaserelevant pathology. We show that iDANs derived from Parkinson’s disease patients exhibit lower basal chaperone-mediated autophagy as compared to iDANs of healthy donors. Furthermore, stress-induced autophagy resulted in an accumulation of macroautophagic structures in induced neurons (iNs) derived from Parkinson’s disease patients, independently of the specific neuronal subtype but dependent on the age of the donor. Finally, we found that these impairments in patient-derived iNs lead to an accumulation of phosphorylated alpha-synuclein, a hallmark of Parkinson’s disease pathology. Taken together, our results demonstrate that direct neural reprogramming provides a patient-specific model to study aged neuronal features relevant to idiopathic Parkinson’s disease.


2021 ◽  
pp. 1-9
Author(s):  
Jingyuan Huang ◽  
Yan Xu ◽  
Fang Wang ◽  
Haili Wang ◽  
Lu Li ◽  
...  

<b><i>Objective:</i></b> This study aimed to investigate whether long noncoding RNA sprouty receptor tyrosine kinase signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is involved in the regulation of ketamine-induced neurotoxicity. <b><i>Methods:</i></b> Human embryonic stem cells (hESCs) were induced into neurons in vitro and treated with ketamine. Apoptosis and neurite degeneration assays were used to determine ketamine-induced neurotoxicity and qRT-PCR to determine SPRY4-IT1 expression. SPRY4-IT1 was downregulated in hESC-induced neurons to examine its regulation on ketamine-induced neurotoxicity. The correlation between enhancer of zeste homolog 2 (EZH2) and SPRY4-IT1 was also examined. EZH2 was upregulated in SPRY4-IT1-downregualted hESC-induced neurons to further examine its participation in SPRY4-IT1-mediated ketamine neurotoxicity. <b><i>Results:</i></b> Ketamine-induced dose-dependent apoptosis, neurite degeneration, and SPRY4-IT1 upregulation in hESC-induced neurons. Lentivirus-mediated SPRY4-IT1 downregulation protected ketamine neurotoxicity. EZH2 expression was positively correlated with SPRY4-IT1 in hESC-induced neurons. EZH2 overexpression markedly reversed the protective effects of SPRY4-IT1 knockdown on ketamine neurotoxicity. <b><i>Conclusions:</i></b> SPRY4-IT1 is involved in anesthesia-induced neurotoxicity, possibly through the regulation on EZH2 gene.


Sign in / Sign up

Export Citation Format

Share Document