Faculty Opinions recommendation of Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize.

Author(s):  
Xinguang Zhu
Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 787-797
Author(s):  
Lizzie Cribb ◽  
Lisa N Hall ◽  
Jane A Langdale

Abstract Maize leaf blades differentiate dimorphic photosynthetic cell types, the bundle sheath and mesophyll, between which the reactions of C4 photosynthesis are partitioned. Leaf-like organs of maize such as husk leaves, however, develop a C3 pattern of differentiation whereby ribulose bisphosphate carboxylase (RuBPCase) accumulates in all photosynthetic cell types. The Golden2 (G2) gene has previously been shown to play a role in bundle sheath cell differentiation in C4 leaf blades and to play a less well-defined role in C3 maize tissues. To further analyze G2 gene function in maize, four g2 mutations have been characterized. Three of these mutations were induced by the transposable element Spm. In g2-bsd1-m1 and g2-bsd1-s1, the element is inserted in the second intron and in g2-pg14 the element is inserted in the promoter. In the fourth case, g2-R, four amino acid changes and premature polyadenylation of the G2 transcript are observed. The phenotypes conditioned by these four mutations demonstrate that the primary role of G2 in C4 leaf blades is to promote bundle sheath cell chloroplast development. C4 photosynthetic enzymes can accumulate in both bundle sheath and mesophyll cells in the absence of G2. In C3 tissue, however, G2 influences both chloroplast differentiation and photosynthetic enzyme accumulation patterns. On the basis of the phenotypic data obtained, a model that postulates how G2 acts to facilitate C4 and C3 patterns of tissue development is proposed.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Ghulam Mustafa ◽  
Muhammad Sarwar Khan

We report here plastid transformation in sugarcane using biolistic transformation and embryogenesis-based regeneration approaches. Somatic embryos were developed from unfurled leaf sections, containing preprogrammed progenitor cells, to recover transformation events on antibiotic-containing regeneration medium. After developing a proficient regeneration system, the FLARE-S (fluorescent antibiotic resistance enzyme, spectinomycin and streptomycin) expression cassette that carries species-specific homologous sequence tails was used to transform plastids and track gene transmission and expression in sugarcane. Plants regenerated from streptomycin-resistant and genetically confirmed shoots were subjected to visual detection of the fluorescent enzyme using a fluorescent stereomicroscope, after genetic confirmation. The resultant heteroplasmic shoots remained to segregate on streptomycin-containing MS medium, referring to the unique pattern of division and sorting of cells in C4 monocotyledonous compared to C3 monocotyledonous and dicotyledonous plants since in sugarcane bundle sheath and mesophyll cells are distinct and sort independently after division. Hence, the transformation of either mesophyll or bundle sheath cells will develop heteroplasmic transgenic plants, suggesting the transformation of both types of cells. Whilst developed transgenic sugarcane plants are heteroplasmic, and selection-based regeneration protocol envisaging the role of division and sorting of cells in the purification of transplastomic demands further improvement, the study has established many parameters that may open up exciting possibilities to express genes of agricultural or pharmaceutical importance in sugarcane.


1974 ◽  
Vol 52 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
C. K. M. Rathnam ◽  
V. S. R. Das

The intercellular and intracellular distributions of nitrate assimilating enzymes were studied. Nitrate reductase was found to be localized on the chloroplast envelope membranes. The chloroplastic NADPH – glutamate dehydrogenase was concentrated in the mesophyll cells. The extrachloroplastic NADH – glutamate dehydrogenase was localized in the bundle sheath cells. Glutamate synthesized in the mesophyll chloroplasts was interpreted to be utilized exclusively in the synthesis of aspartate, while in the bundle sheath cells it was thought to be consumed in other cellular metabolic processes. Based on the results, a scheme is proposed to account for the nitrate metabolism in the leaves of Eleusine coracana Gaertn. in relation to its aspartate-type C-4 pathway of photosynthesis.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 131-136 ◽  
Author(s):  
C. Dennis Elmore ◽  
Rex N. Paul

Spotted spurge (Euphorbia maculataL.) and prostrate spurge (E. supinaRaf.), both in subgenusChamesyce,were examined by light and electron microscopy using a caffeine - fixation technique to sequester the phenolic pools intercellularly. Both species have typical dicotyledon-type Kranz anatomy. Sequestered phenolic pools were located in vacuoles in epidermal and mesophyll cells. Only in spotted spurge, however, were additional phenolic pools formed in bundle - sheath cells. This study was undertaken because allelopathy has been demonstrated in prostrate spurge and because phenolic compounds have been implicated in allelopathy. These results would indicate that spotted spurge should also be allelopathic.


1969 ◽  
Vol 47 (1) ◽  
pp. 15-21 ◽  
Author(s):  
T. Bisalputra ◽  
W. J. S. Downton ◽  
E. B. Tregunna

The ultrastructure of the chlorenchymatous tissues around the vascular bundles of three different types of grass leaves is described. In the temperate grass leaf, as exemplified by wheat, the inner mestom sheath contains proplastids. Normal chloroplasts are found only within the mesophyll cells. Smaller chloroplasts occur in cells of the ill-defined parenchymatic bundle sheath. This type of leaf has the photosynthetic pathway described by Calvin and a high carbon dioxide compensation value. In the tropical grasses, Sorghum and Aristida, the new photosynthetic pathway proposed by Hatch et al. and low carbon dioxide compensation are correlated with development of the parenchymatic bundle sheath. Cytological evidence indicates that cells of the bundle sheath are much more active than the surrounding mesophyll tissue. The specialized chloroplasts of the bundle sheath cells may be responsible for the physiological and biochemical differences between leaves of tropical and temperate grasses.


Sign in / Sign up

Export Citation Format

Share Document