scholarly journals The Effect of Soil Coverings on Cellulose Decomposition Activity of Sandy Soil

2003 ◽  
pp. 15-20
Author(s):  
Csaba Varga

The purpose of our experiments is to discover the effect of different soil cover matter (agroszövet and black polyethylene) on actual (under field circumstances) and potential (under laboratory circumstances) cellulose decomposition activity. In our field research, the Unger-test was used, and in laboratory research, the Petkov-Markova method was applied. In the first year of the experiment (2000) actual cellulose decomposition activity was significantly higher in covered than in the uncovered soil both in spring and autumn. The difference between the two treatments was significant only in spring. In the spring of 2001 black polyethylene showed significantly the lowest, activity, while in autumn the agroszövet (a porous black polyethylene) showed significantly the highest activity. In the autumn of 2001 the soil covered by black polyethylene gave non-significant,and the soil covered by agroszövet gave a significant higher activity value than the control. Averaging the two experimental years (2000-2001), the actual cellulose decomposition activity was significantly higher in covered soils both in spring (with 30-39%) and in autumn (with 34-69%). Moreover, in autumn a significantly higher value was detected under agroszövet than in any other treatment. The difference between the effect of treatments was not significant. In 2000, the potential cellulose decomposition activity was the highest in soil covered by agroszövet in spring, but in autumn higher activity value was detected in every covered soil than in the control. In the spring of 2001, every covered soil showed a lower, but in autumn a higher, potential cellulose decomposition rate than the control. The activity decreased significantly 27 (agroszövet) and 45 (black polyethylene) percent in spring, and increased no- significantly 8 (agroszövet) and 4 (black polyethylene) percent in autumn. During the two experimental years, we observed on average lower potential cellulose decomposition activity (15-60%) in spring and a higher one (14-43%) in autumn. Neither was significant. The dynamic of potential cellulose decomposition activity averaging 2000 and 2001 showed a slight, the actual cellulose decomposition activity an explicit non-significant upward tendency. There was a strong (r=0,189) correlation obtained between the actual and potential cellulose decomposition activity of soil, and a medium-strong (r=0,673) relationship between the soil moisture content and actual cellulose decomposition activity.

2020 ◽  
Vol 15 (2) ◽  
pp. 68-74
Author(s):  
Paardensha Ivy Chinir ◽  
Manoj Dutta ◽  
Rizongba Kichu ◽  
Sewak Ram

A field experiment was conducted to evaluate the effect of forest litter and its time of incorporation on soil physical properties. The study showed that plots with forest litter incorporated at 45 DBS (Days Before Sowing) had significantly higher soil moisture content as compared to those incorporated at 30 DBS after 30 and 60 DAS. However, the difference in the time of incorporation had no significant effect on soil moisture content at 90 DAS. At 30 DAS, application of forest litter @ 6 t ha-1 and 9 t ha-1 significantly increased the soil moisture content at a rate of 4.11 and 11.42 per cent, respectively over control. At 60 DAS, application of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 significantly increased the soil moisture content at the rate of 15.05, 17.26 and 25.65 per cent, respectively over control. At 90 DAS, a trend was noticed which showed that soil moisture content significantly increased at a progressive rate with each increase in the dose of forest litter application. At 90 DAS, the addition of forest litter @ 3 t ha-1, 6 t ha-1and 9 t ha-1 increased the soil moisture content @ 10.16, 17.84 and 22.20 per cent, respectively over control. The plots with forest litter incorporated at 45 DBS had significantly higher hydraulic conductivity, per cent aggregates and mean weight diameter as compared to those incorporated at 30 DBS. However, the difference in the time of incorporation i.e., at 30 and 45 DBS had no significant effect on bulk density, particle density and water holding capacity. Incorporation of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 significantly decreased the bulk density at the rate of 3.67, 8.65 and 14.14 per cent; while particle density increased at the rate of 2.59, 3.42 and 6.61 per cent, respectively when compared to control. The addition of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 resulted in a significant increase in water holding capacity and hydraulic conductivity at a rate of 3.72, 4.65 and 6.77 per cent and 24.13, 32.30 and 41.73 per cent, respectively over control. Further, the application of forest litter @ 3t ha-1, 6 t ha-1 and 9 t ha-1 significantly increased the per cent aggregate and mean weight diameter of the soil @ 1.77, 3.49 and 6.58 per cent 17.31, 26.28 and 41.35 per cent, respectively over control. The study revealed that incorporating 9 t ha-1 of forest litter at 45 DBS had the most beneficial effect on soil physical properties.


2018 ◽  
Vol 10 (12) ◽  
pp. 4642 ◽  
Author(s):  
Arafat Alkhasha ◽  
Abdulrasoul Al-Omran ◽  
Anwar Aly

Synthetic polymers, such as polyacrylamide (PAM), and biochar are generally used as soil amendments to improve soil properties. This paper explores a laboratory column experiment conducted to investigate the effects of biochar (pyrolysis at 400–450 °C) and polymers, with different application rates, on the hydro-physical properties of sandy soil. The experiment evaluated four rates each of biochar (0.0% (C), 2% (B1), 4% (B2), 6% (B3) and 8% (B4)) and polymers (0.0% (C), 0.2% (P1), 0.4% (P2), 0.6% (P3), and 0.8%(P4)), as well as a mixture of them. The infiltration rate decreased significantly when a mixture of biochar and polymers was adopted. B1 showed a decrease of 32.73% while a mixture of 8% (B4) and (0.8%) P4 exhibited a decrease of 57.31%. The polymers increased the infiltration rate at low concentrations (P1 and P2) and reduced it at high concentrations (P3 and P4). The cumulative evaporation decreased significantly for most treatments. B1 recorded the highest decrease in cumulative evaporation with a percentage decrease of 31.9%. The highest decrease in hydraulic conductivity (Ks) was for B1. However, the mixture of B4 and P4 resulted in the highest increase in soil moisture content at field capacity compared to the control and other treatments. P4 and the mixture of B2 and P2 showed significant (p < 0.05) increases in the percentage of stable aggregate (SA) in fraction size (0.25–0.125 mm). Although the mixture of B4 and P4 had the highest increase in soil moisture content, this study recommends using the B1 treatment on sandy soil in arid environments due to its strong hydro-physical properties and affordability.


2020 ◽  
Vol 10 (1) ◽  
pp. 101-114
Author(s):  
Péter Tamás Nagy ◽  
◽  
Mary Karanja ◽  
Tamás Magyar ◽  
◽  
...  

2020 ◽  
Vol 198 ◽  
pp. 01047
Author(s):  
Wei Bai ◽  
Tao Jian ◽  
Rongbing Lin ◽  
Xiaoqian Luo ◽  
Lingwei Kong

The electrode material is one of the critical factors affecting the electroosmosis efficiency. The electroosmotic test was conducted to compare the current, volume moisture content, and energy consumption of Electro-Conductive Plastics Electrode (ECPE) and metal electrode in the dispose of sludge. The results show that: the current decreases of ECPE is smaller than the metal electrode before 20h, and the difference value of moisture content between cathode and anode of ECPE is smaller when electroosmosis is stable. The energy consumption of ECPE is lower in the range of soil moisture content of 35% - 60%. The ECPE has a particular advantage in energy consumption and uniformity of soil moisture content, but has a disadvantage in residual moisture content as compared with the metal electrode.


Oikos ◽  
1968 ◽  
Vol 19 (2) ◽  
pp. 234 ◽  
Author(s):  
Åke Fleetwood ◽  
Ingemar Larsson ◽  
Ake Fleetwood

Author(s):  
Qi Haijun ◽  
◽  
Jin Xiu ◽  
Zhao Liu ◽  
DEDO Irene Maxime ◽  
...  

2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Sign in / Sign up

Export Citation Format

Share Document