scholarly journals Influencing the growth kinetics of yeast strains with vitamin supplementation

2018 ◽  
pp. 113-115
Author(s):  
Judit Molnár ◽  
Erika Lakatos ◽  
Balázs Ásványi

The aim of the current experiment was to optimize the creation process of single cell protein on plant-based substrate solution with the intention to improve end-product turn out by means of adding vitamin solution. Based on the results of the fermentation processes of yeast strains, it was concluded that the vitamin-supplementation produced its greatest effect on the dry matter production, primarily on the K. marxianus DSM 4908 strain, while it was less beneficent when it comes to the figures of wet cell mass. In addition, it can be assumed that vitamin supplementation increased the maximum specific rate of growth (μmax) and decreased the generation time (tg) significantly. In the case of the K. marxianus yeast strain on corn steep liquor treated with vitamin-supplementation, the highest (μmax) and the lowest (tg) data were observed [(0.226 h-1) and (4.4 h), respectively]. Based on the results it was found that K. marxianus DSM 4908 is expedient to be applied on corn steep liquor medium in order to determine its suitability to produce additive for feeding.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Pariya Shaigani ◽  
Dania Awad ◽  
Veronika Redai ◽  
Monika Fuchs ◽  
Martina Haack ◽  
...  

Abstract Background Oleaginous yeasts are promising microbial platforms for sustainable, bio-based production of biofuels and oleochemical building blocks. Bio-based residues provide sustainable and cost-effective carbon sources for fermentative yeast oil production without land-use change. Considering the regional abundancy of different waste streams, we chose complex biomass residue streams of marine origin; macroalgae hydrolysate, and terrestrial origin; wheat straw hydrolysate in the presence, and absence of corn steep liquor as a complex nitrogen source. We investigated the biomass and lipid yields of an array of well-described oleaginous yeasts; R. glutinis, T. asahii, R. mucilaginosa, R. toruloides, C. oleaginosus growing on these hydrolysates. Furthermore, their sugar utilization, fatty acid profile, and inhibitory effect of the hydrolysates on yeast growth were compared. For correlative reference, we initially performed comparative growth experiments for the strains on individual monomeric sugars separately. Each of these monomeric sugars was a dominant carbon source in the complex biomass hydrolysates evaluated in this study. In addition, we evaluated N-acetylglucosamine, the monomeric building block of chitin, as a low-cost nitrogen and carbon source in yeast fermentation. Results C. oleaginosus provided the highest biomass and lipid yields. In the wheat straw and brown algae hydrolysates, this yeast strain gained 7.5 g/L and 3.8 g/L lipids, respectively. Cultivation in algae hydrolysate resulted in a higher level of unsaturated fatty acids in the lipids accumulated by all yeast strains. R. toruloides and C. oleaginosus were able to effectively co-utilize mannitol, glucose, and xylose. Growth rates on wheat straw hydrolysate were enhanced in presence of corn steep liquor. Conclusions Among the yeast strains investigated in this study, C. oleaginosus proved to be the most versatile strain in terms of substrate utilization, productivity, and tolerance in the complex media. Various fatty acid profiles obtained on each substrate encourage the manipulation of culture conditions to achieve the desired fatty acid composition for each application. This could be accomplished by combining the element of carbon source with other formerly studied factors such as temperature and oxygen. Moreover, corn steep liquor showed promise for enhancement of growth in the oleaginous strains provided that carbon substrate is available.


2021 ◽  
Author(s):  
Andrew Leduc ◽  
R. Gray Huffman ◽  
Nikolai Slavov

Many biological functions, such as the cell division cycle, are intrinsically single-cell processes regulated in part by protein synthesis and degradation. Investigating such processes has motivated the development of single-cell mass spectrometry (MS) proteomics. To further advance single-cell MS proteomics, we developed a method for automated nano-ProteOmic sample Preparation (nPOP). nPOP uses piezo acoustic dispensing to isolate individual cells in 300 picoliter volumes and performs all subsequent preparation steps in small droplets on a hydrophobic slide. This allows massively parallel sample preparation, including lysing, digesting, and labeling individual cells in volumes below 20 nl. Single-cell protein analysis using nPOP classified cells by cell type and by cell cycle phase. Furthermore, the data allowed us to quantify the covariation between cell cycle protein markers and thousands of proteins. Based on this covariation, we identify cell cycle associated proteins and functions that are shared across cell types and those that differ between cell types.


1991 ◽  
Vol 36 (2) ◽  
pp. 157-160 ◽  
Author(s):  
Mohsen H. Selim ◽  
Ali M. Elshafei ◽  
Ahmed I. El-Diwany

1978 ◽  
Vol 39 (02) ◽  
pp. 346-359 ◽  
Author(s):  
P D Winocour ◽  
M R Turner ◽  
T G Taylor ◽  
K A Munday

SummaryA major limitation to single-cell protein (SCP) as a human food is its high nucleic acid content, the purine moiety of which is metabolised to uric acid. Rats given a Fusarium mould as a source of SCP in diets containing oxonate, a uricase inhibitor, showed elevated plasma and kidney uric acid concentrations after 21 d, which were related to the level of dietary mould. ADP-induced and thrombin-induced platelet aggregation was greater in the hyperuricaemic rats than in controls and a progressive increase in aggregation with increasing levels of dietary mould was observed. Furthermore a time-lag, exceeding the life-span of rat platelets, was observed between the development of hyperuricaemia and the increase in aggregation. A similar time-lag was observed between the lowering of the hyperuricaemia and the reduction of platelet aggregation when oxonate was removed from the diet.If human platelets react to uric acid in the same manner as rat platelets this might explain the link that has been suggested between hyperuricaemia and ischaemic heart disease. In that event diets high in nucleic acids might be contra-indicated in people at risk from ischaemic heart disease.In rats given a low protein diet (50 g casein/kg) for 21 d ADP-induced and thrombin-induced platelet aggregation and whole blood platelet count were reduced compared with control animals receiving 200 g casein/kg diet but not in rats given 90 or 130 g casein/kg diet. A study of the time course on this effect indicated that the reduction both in aggregation tendency and in whole blood platelet count occurred after 4 d of feeding the low protein diet. These values were further reduced with time.


Sign in / Sign up

Export Citation Format

Share Document