scholarly journals Design and Development of a Wireless Robotic System for Radiation Detection and Measurement

A wireless robotic system has been proposed for radiation measurement and monitoring around nuclear facilities. The purpose of the robot is to assist the radiation workers from getting unwanted radiation exposure. The system includes a ground vehicle, GM tube-based radiation counting unit, Raspberry Pi, Pi camera module, and web-based controlling and monitoring unit. With the developed robotic system, the robot is controlled from a server to be moved towards the desired location and measure the radiation level. Radiation level of natural back several radioactive point sources (Cs 137, Co 60, Mn 54) located at different places in the laboratory, has been measured and compared with a GM tube-based commercial survey meter Gamma Scout, w/ALERT model. Analyzing the measured data a deviation has been found varying from 0.29 to 2.18. The proposed system is suitable for radiation detection and measurement in absence of radiation workers in nuclear facilities.

Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1369-1378 ◽  
Author(s):  
Georg F. Schwarz ◽  
Ladislaus Rybach ◽  
Emile E. Klingelé

Airborne radiometric surveys are finding increasingly wider applications in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma‐ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose‐rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Gösgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.


2021 ◽  
Vol 5 (6) ◽  
pp. 1099-1105
Author(s):  
Desta Yolanda ◽  
Mohammad Hafiz Hersyah ◽  
Eno Marozi

Security monitoring systems using face recognition can be applied to CCTV or IP cameras. This is intended to improve the security system and make it easier for users to track criminals is theft. The experiment was carried out by detecting human faces for 24 hours using different cameras, namely an HD camera that was active during the day and a Night Vision camera that was active at night. The application of Unsupervised Learning method with the concept of an image cluster, aims to distinguish the faces of known or unknown people according to the dataset built in the Raspberry Pi 4. The user interface media of this system is a web-based application built with Python Flask and Python MySQL. This application can be accessed using the domain provided by the IP Forwarding device which can be accessed anywhere. According to the test results on optimization of storage, the system is able to save files only when a face is detected with an average file size of ± 2.28 MB for 1x24 hours of streaming. So that this storage process becomes more efficient and economical compared to the storage process for CCTV or IP cameras in general.


2020 ◽  
Vol 225 ◽  
pp. 01008
Author(s):  
M. Bilge Demirkoz ◽  
Caner Seckin ◽  
Akanay Avaroglu ◽  
Besna Bulbul ◽  
Pelin Uslu ◽  
...  

Middle East Technical University – Defocusing Beam Line (METU-DBL) project is an irradiation facility providing 15 MeV to 30 MeV kinetic energy protons for testing various high radiation level applications, ranging from Hi-Lumi LHC upgrade, space electronic components to nuclear material research. The project located inside the premises of the TAEA (Turkish Atomic Energy Agency) SANAEM (Saraykoy Nuclear Education and Research Center) close to Ankara, provides users a wide selectable flux menu (105–1010 p/cm2/s). The facility is now being commissioned and the facility will be providing a large test area (20 cm x 15 cm) for material, detector and electronics tests. The proton beam is monitored along the beamline using aluminum oxide screens and the flux and uniformity is measured using three detectors attached to the robotic system for cross- checks. A fiber scintillator detector scans the large irradiation area while small area diamond detector and Timepix3 detector are used for spot checks for calibration. Several samples can be radiated simultaneously inside the irradiation area and the robotic system provides 5 separate holders for samples which can be moved in or out, providing users flexibility for the desired fluence. This talk will first introduce METU- DBL as a radiation test facility, then discuss the radiation monitoring of the beam area and the radiation room, while highlighting how this facility can be used for future testing of materials for radiation tolerance.


2016 ◽  
Vol 19 (1) ◽  
pp. 22
Author(s):  
Muhammad Khoiru Syabibi ◽  
Arkhan Subari

Muhammad Khoiru Syabibi, Arkhan Subari  in this paper explain that Along with the progress of era, the development of advanced technology also impacts on the development of security systems. Sophisticated security systems that digitally integrated has been growing, one of them is a web-based security system. This web-based home security monitoring system uses a raspberry pi b + that serves as a server and media controller, then for the web programming, it uses HTML, CSS and Javascript. This web-based home security monitoring system home uses a webcam (web camera) that functions like CCTV which can be monitored via a web browser, magnetic switch as security detector, keypad as access control to turn off security monitoring system for 10 seconds, and the buzzer and LED as security indicators. When someone enter the house, he/she must press the keypad. If keypad input is correct according to the passcode then the LED will turn off, indicate that home security monitoring system off for 10 seconds. If he/she enter the house without pressing the keypad according to the passcode then when the door opens, a switch magnetic will active, then buzzer will sound and the indicator on the web will change, indicate that he/she is a person who will do the crime.Keyword : raspberry pi b+, webcam, magnetic switch, keypad, buzzer and LED. ReferencesAndre. 2014. Sejarah PHP dan Perkembangan Versi PHP. http://www.duniailkom.com/sejarah-php-dan-perkembangan-versi-php.Apache Software Foundation. About the Apache HTTP Server Project. http://httpd.apache.org/ABOUT_APACHE.html.Arfa. 2014. Akses Kontrol Kendaraan Bermotor Roda Empat Menggunakan Password dan Sensor. Skripsi. Jakarta: STMIK Raharja.Aziz, Abdul. 2012. Pengertian, Fungsi, Serta Cara Kerja Web Server. http://www.dedeerik.com/pengertian-fungsi-serta-cara-kerja-web-server.Baharudin, M. 2011. Pengertian Website. http://www.naevaweb.com/pengertian-website/arsip.html.Cox, Tim. 2014. Raspberry Pi Cookbook. Birmingham: Packt Publishing.Embedded Linux Wiki. Raspberry Pi, Low-level Peripherals. http://elinux.org/RPi_Low- level_peripherals.Embededdlinux. Raspberry Mode B-Block diagram. Diunduh http://embeddelinux01.com.Faizal. 2011. Prinsip Kerja Piezoelectric. http://www.insinyoer.com/prinsip-kerja-piezoelectric.Friedl, Stave. 2015. Secure Linux/Unix Access With Putty and Open SSH. http://unixwiz.net/techtips/putty-openssh.html/2015.Gudang Linux. 2011. Python. http://gudanglinux.com/glossary/python.Gurevich, Vladimir. 2011. Electric Relays: Principles and Applications. London: CRC Press.Harian Android. 2014. Pengertian dan Fungsi SD Card. http://www.harianandroid.com/2014/04/pengertian-dan-fungsi-sd-card.html.Heranudin. 2011. Rancang Bangun Sistem Keamanan Ruangan Menggunakan Radio Frequency. Skripsi. Depok: FT UI.Iswan, Agusta. 2012. Sistem Proteksi Brankas Berpassword Menggunakan Magnetic Doorlock sebagai Penggerak Doorstrike Berbasis Mikrokontroller. Tugas Akhir D3 Teknik Elektro. Semarang: FT UNNES.Kho, Dickson. 2012. Dioda dan Fungsi Dioda. http://teknikelektronika.com/-dioda-fungsi-dioda.Kho, Dickson. 2012. Pengertian LED (Light Emitting Diode) dan Cara Kerjanya. http://teknikelektronika.com/pengertian-led-light-emitting-diode-cara-kerja.Kho, Dickson. Pengertian Resistor dan Jenis Resistor. http://teknikelektronika.com/pengertian-resistor-jenis-jenis-resistor.Komponen Elektronika. 2011. Rangkaian Buzzer. http://komponenelektronika.com/rangkaian- buzzer.html.MS-1 Magnetic Door Switch datasheet. http://www.braude.ac.il/files/departments/electrical_electronic_engineering/labs/data_pages/p3.pdfNasih, Muhammad Usman. 2013. Alat Pengaman Kendaraan Bermotor Menggunakan Password dan SMS. Tugas Akhir. Yogyakarta: STMIK El Rahma.Özcan, Yakut. 2014. Piezoelektrik.Paul Malvino, Albert. 2010. Prinsip-Prinsip Elektronika. Jakarta: Erlangga.Pemrograman Komputer. 2012. Petunjuk Praktikum Pemrograman Komputer. Semarang: D3 Teknik Elektro UNDIP.Prayitno, Indra. 2010. Kupas Tuntas Malwar. Jakarta: Elex Media Komputindo.Raspberry Pi Fondation. GPIO Raspberry Pi Model A dan B. https://www.raspberrypi.org/documentation/usage/gpio/2009Raspberry Pi Fondation. Setting Up And Apache Web Server On A Raspberry Pi. https://www.raspberrypi.org/documentation/remote-access/web-server/apache.md.Raspberrry Pi Fondation. SSH Using Windows. http://raspberrypi.org/documentation/remote-access/ssh/windows.md/2014Richardson, Matt dan Shawn Wallace. 2015. Make: Getting Started with Raspberry Pi. Sebastopol: Maker Media.Robinson, Andrew dan Mike Cook. 2014. Raspberry Pi Projects. Chichester: John Wiley & Sons Ltd.Rohiman, Ao. 2011. Pengertian dan cara kerja router.http://www.catatanteknisi.com/2011/05/pengertian-cara-kerja-router.html.Sidik, Betha. 2011. Javascript. Jakarta: Informatika.Wahyu. Pengertian Webcam dan Fungsinya. http://wahyu.blog.fisip.uns.ac.id/2011/12/06/pengertian-web-cam-dan-fungsinya.Wikipedia. Secure Digital. https://en.wikipedia.org/wiki/Secure_Digital#Micro. 


2016 ◽  
Vol 861 ◽  
pp. 556-563 ◽  
Author(s):  
Matthias Schuss ◽  
Stefan Glawischnig ◽  
Ardeshir Mahdavi

Efforts toward optimized building management and operation require monitoring data from multiple sources. Experiences from previous research projects underline the need for an easily adaptable, low-cost, and easy to set up monitoring infrastructure that could provide data for modeling and performance evaluation. The increasing availability of small and powerful development boards (e.g. Raspberry Pi BeagleBoard or Arduino) facilitates the implementation of a cost-efficient infrastructure for data collection and building monitoring. For the purpose of the present contribution, the Arduino Yún was used to create a data logger that obtains data from wireless sensors, stores it locally, and syncs it with a data repository. Toward this end, we have developed a web-based user interface that enables the user to evaluate various aspects of the monitored building's performance. The communication between the software components is implemented via RESTful interfaces and enables the user to integrate also other data sources such as web services. The paper includes an actual implementation of the above approach. Thereby, we illustrate how the constitutive system components can be integrated in terms of a versatile monitoring system with multiple utilities in terms of building performance assessment and building diagnostics.


Sign in / Sign up

Export Citation Format

Share Document