Desain Kontrol Tracking Sudut Yaw Pada AUV Menggunakan State Dependent Riccati Equations (SDRE)-LQT

2019 ◽  
Vol 5 (2) ◽  
pp. 187-195
Author(s):  
Muhammad Hasan Basri

Dalam merealisasikan permasalahan control tracking sudut yaw pada AUV, penggunaan metode State Dependent Riccati Equations berdasarkan Linear Quadratic Tracking (SDRE-LQT) direalisasikan. Algoritma ini menghitung perubahan permasalahan tracking sudut yaw melalui perhitungan perubahan parameter dari Autonomous Underwater Vehicle (AUV) secara online dengan Algebraic Riccati Equations. Sehingga sinyal kontrol yang diberikan ke plant dapat mengikuti perubahan kondisi dari plant itu sendiri. Metode control SDRE-LQT bekerja dengan cukup baik ketika ada  faktor non linearitas dari sistem, yaitu pengaruh  dari  sudut  roll dan sudut pitch yang mempengaruhi state sudut yaw, yang menyebabkan timbulnya overshoot dan undershoot, dimana kontroler SDRE-LQT mampu mengendalikan sudut yaw AUV sesuai dengan perubahan sinyal referensi yang diberikan dengan error steady state kecil, yaitu e = -0.01282 %.

Author(s):  
Muhammad Basri Hasan

In realizing yaw angle control tracking on AUV, the use of the State Dependent Riccati Equations method based on Linear Quadratic Tracking (SDRE-LQT) is realized. This algorithm calculates changes in yaw angle tracking problems through calculation of parameter changes from online AUV with Algebraic Riccati Equations.So that the control signal given to the plant can follow the changing conditions of the plant itself. 


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Vladimir Turetsky

Two inverse ill-posed problems are considered. The first problem is an input restoration of a linear system. The second one is a restoration of time-dependent coefficients of a linear ordinary differential equation. Both problems are reformulated as auxiliary optimal control problems with regularizing cost functional. For the coefficients restoration problem, two control models are proposed. In the first model, the control coefficients are approximated by the output and the estimates of its derivatives. This model yields an approximating linear-quadratic optimal control problem having a known explicit solution. The derivatives are also obtained as auxiliary linear-quadratic tracking controls. The second control model is accurate and leads to a bilinear-quadratic optimal control problem. The latter is tackled in two ways: by an iterative procedure and by a feedback linearization. Simulation results show that a bilinear model provides more accurate coefficients estimates.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 149741-149750
Author(s):  
Dawei Hu ◽  
Gangyan Li ◽  
Guoming Zhu ◽  
Zihao Liu ◽  
Ming Tu

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Nanang Syahroni ◽  
Jae Weon Choi

This paper presents an optimal regulator for depth control simulation of an autonomous underwater vehicle (AUV) using a new approach of decentralized system environment called open control platform (OCP). Simulation results are presented to demonstrate performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document