scholarly journals Use of Airships in Human Space Exploration.

2019 ◽  
pp. 92-105 ◽  
Author(s):  
Igor Nikolaevich Kulikov

The article presents the potentialities of manned aeronautical systems in the context of search and rescue of space crews, as well as transport and logistics support for the operation of distant space infrastructure, including Vostochny cosmodrome. The considered technology is based on the results of successful creation and operation of modern Russian airships taking into account the long term worldwide experience in the use of manned aeronautical systems in the fields of aviation transport, military defense, manufacturing and tourism.

Author(s):  
Aaron Berliner ◽  
Isaac Lipsky ◽  
Davian Ho ◽  
Jacob Hilzinger ◽  
Gretchen Vengerova ◽  
...  

Reinvigorated public interest in human space exploration has led to the need to address the science and engineering challenges described by NASA's Space Technology Grand Challenges (STGCs) for expanding the human presence in space. Here we define Space Bioprocess Engineering (SBE) as a multi-disciplinary approach to design, realize, and manage a biologically-driven space mission as it relates to addressing the STGCs for advancing technologies to support the nutritional, medical, and incidental material requirements that will sustain astronauts against the harsh conditions of interplanetary transit and habitation offworld. SBE combines synthetic biology and bioprocess engineering under extreme constraints to enable and sustain a biological presence in space. Here we argue that SBE is a critical strategic area enabling long-term human space exploration; specify the metrics and methods that guide SBE technology life-cycle and development; map an approach by which SBE technologies are matured on offworld testing platforms; and suggest a means to train the next generation spacefaring workforce on the SBE advantages and capabilities. In doing so, we outline aspects of the upcoming technical and policy hurdles to support space biomanufacturing and biotechnology. We outline a perspective marriage between space-based performance metrics and the synthetic biology Design-Build-Test-Learn cycle as they relate to advancing the readiness of SBE technologies. We call for a concerted effort to ensure the timely development of SBE to support long-term crewed missions using mission plans that are currently on the horizon.


Author(s):  
Aaron Berliner ◽  
Isaac Lipsky ◽  
Davian Ho ◽  
Jacob Hilzinger ◽  
Gretchen Vengerova ◽  
...  

Reinvigorated public interest in human space exploration has led to the need to address the science and engineering challenges described by NASA's Space Technology Grand Challenges (STGCs) for expanding the human presence in space. Here we define Space Bioprocess Engineering (SBE) as a multi-disciplinary approach to design, realize, and manage a biologically-driven space mission as it relates to addressing the STGCs for advancing technologies to support the nutritional, medical, and incidental material requirements that will sustain astronauts against the harsh conditions of interplanetary transit and habitation offworld. SBE combines synthetic biology and bioprocess engineering under extreme constraints to enable and sustain a biological presence in space. Here we argue that SBE is a critical strategic area enabling long-term human space exploration; specify the metrics and methods that guide SBE technology life-cycle and development; map an approach by which SBE technologies are matured on offworld testing platforms; and suggest a means to train the next generation spacefaring workforce on the SBE advantages and capabilities. In doing so, we outline aspects of the upcoming technical and policy hurdles to support space biomanufacturing and biotechnology. We outline a perspective marriage between space-based performance metrics and the synthetic biology Design-Build-Test-Learn cycle as they relate to advancing the readiness of SBE technologies. We call for a concerted effort to ensure the timely development of SBE to support long-term crewed missions using mission plans that are currently on the horizon.


Author(s):  
Koki Ho ◽  
Hao Chen ◽  
Harrison Kim

This paper analyzes the value of staged deployment for complex infrastructure system and propose a concept of bootstrapping staged deployment. Staged deployment has been well known for its advantage of providing flexibility in an uncertain environment. In contrast, this paper demonstrates that the proposed bootstrapping staged deployment can even add values in a deterministic environment. The key idea of bootstrapping staged deployment is to have the previously deployed stages support the subsequent deployment. We develop an analytical model to demonstrate the effects of bootstrapping staged deployment with a case study in space exploration. Our analysis results show that with a well-coordinated deployment plan, staged deployment can overperform single-stage deployment even in a deterministic environment, and that there is an optimal number of stages in terms of lifecycle cost under certain conditions. Our method can find the analytical expression for the optimal number of stages and its deployment strategies. The general findings from the proposed concept and analytical method can advance our knowledge about systems staged deployment, and make operational planning of resource generation infrastructure more efficient.


Human space exploration has historically provided a great many people with a positive vision of the future. At this time, society faces many 21st century problems (global warming, sea level rise, etc.) and could use some of that vision. The economic state of the nations that historically paid for this exploration does not currently allow for a large and expensive new space initiative, like Apollo to the Moon or a trip to Mars. Nevertheless, there have been great strides in computing and resulting social media. Could a very large number of dedicated people self-organize into a grassroots human space program? This story envisions such a movement and the lessons today's students could learn from the attempt.


2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 213-216
Author(s):  
G. Zhou ◽  
W. Hu ◽  
H. Pei ◽  
H. Chen ◽  
T.K. Hei

Manned space exploration was initiated in China in 1992, and substantial progress has been made. The next step is to build the Chinese Space Station (CSS), which is planned to be launched in 2020. The CSS will provide an on-orbit laboratory for experimental studies including space radiation research. The health risk of space radiation, especially carcinogenesis, is a major concern for long-term space exploration. Establishing a risk assessment system suitable for Chinese astronauts and developing effective countermeasures are major tasks for Chinese space radiobiologists. The Institute of Space Life Sciences, Soochow University has focused on these topics for years. We established cancer models with low-dose-rate exposure of alpha particles, and elucidated a microRNA-TGFβ network regulating bystander effects and a lncRNA-cytoskeleton network regulating genomic instability induced by ionising radiation. We also confirmed the radioresistance of quiescent cells, which inspires a potential strategy to improve individual radioresistance during long-term space travel. However, we believe that a multi-disciplinary strategy must be developed to protect astronauts from highly energised space radiation.


Sign in / Sign up

Export Citation Format

Share Document