scholarly journals Space Bioprocess Engineering on the Horizon

Author(s):  
Aaron Berliner ◽  
Isaac Lipsky ◽  
Davian Ho ◽  
Jacob Hilzinger ◽  
Gretchen Vengerova ◽  
...  

Reinvigorated public interest in human space exploration has led to the need to address the science and engineering challenges described by NASA's Space Technology Grand Challenges (STGCs) for expanding the human presence in space. Here we define Space Bioprocess Engineering (SBE) as a multi-disciplinary approach to design, realize, and manage a biologically-driven space mission as it relates to addressing the STGCs for advancing technologies to support the nutritional, medical, and incidental material requirements that will sustain astronauts against the harsh conditions of interplanetary transit and habitation offworld. SBE combines synthetic biology and bioprocess engineering under extreme constraints to enable and sustain a biological presence in space. Here we argue that SBE is a critical strategic area enabling long-term human space exploration; specify the metrics and methods that guide SBE technology life-cycle and development; map an approach by which SBE technologies are matured on offworld testing platforms; and suggest a means to train the next generation spacefaring workforce on the SBE advantages and capabilities. In doing so, we outline aspects of the upcoming technical and policy hurdles to support space biomanufacturing and biotechnology. We outline a perspective marriage between space-based performance metrics and the synthetic biology Design-Build-Test-Learn cycle as they relate to advancing the readiness of SBE technologies. We call for a concerted effort to ensure the timely development of SBE to support long-term crewed missions using mission plans that are currently on the horizon.

Author(s):  
Aaron Berliner ◽  
Isaac Lipsky ◽  
Davian Ho ◽  
Jacob Hilzinger ◽  
Gretchen Vengerova ◽  
...  

Reinvigorated public interest in human space exploration has led to the need to address the science and engineering challenges described by NASA's Space Technology Grand Challenges (STGCs) for expanding the human presence in space. Here we define Space Bioprocess Engineering (SBE) as a multi-disciplinary approach to design, realize, and manage a biologically-driven space mission as it relates to addressing the STGCs for advancing technologies to support the nutritional, medical, and incidental material requirements that will sustain astronauts against the harsh conditions of interplanetary transit and habitation offworld. SBE combines synthetic biology and bioprocess engineering under extreme constraints to enable and sustain a biological presence in space. Here we argue that SBE is a critical strategic area enabling long-term human space exploration; specify the metrics and methods that guide SBE technology life-cycle and development; map an approach by which SBE technologies are matured on offworld testing platforms; and suggest a means to train the next generation spacefaring workforce on the SBE advantages and capabilities. In doing so, we outline aspects of the upcoming technical and policy hurdles to support space biomanufacturing and biotechnology. We outline a perspective marriage between space-based performance metrics and the synthetic biology Design-Build-Test-Learn cycle as they relate to advancing the readiness of SBE technologies. We call for a concerted effort to ensure the timely development of SBE to support long-term crewed missions using mission plans that are currently on the horizon.


2019 ◽  
pp. 92-105 ◽  
Author(s):  
Igor Nikolaevich Kulikov

The article presents the potentialities of manned aeronautical systems in the context of search and rescue of space crews, as well as transport and logistics support for the operation of distant space infrastructure, including Vostochny cosmodrome. The considered technology is based on the results of successful creation and operation of modern Russian airships taking into account the long term worldwide experience in the use of manned aeronautical systems in the fields of aviation transport, military defense, manufacturing and tourism.


2019 ◽  
Vol 29 (1) ◽  
pp. 122-130 ◽  
Author(s):  
KONRAD SZOCIK

Abstract:Any space program involving long-term human missions will have to cope with serious risks to human health and life. Because currently available countermeasures are insufficient in the long term, there is a need for new, more radical solutions. One possibility is a program of human enhancement for future deep space mission astronauts. This paper discusses the challenges for long-term human missions of a space environment, opening the possibility of serious consideration of human enhancement and a fully automated space exploration, based on highly advanced AI. The author argues that for such projects, there are strong reasons to consider human enhancement, including gene editing of germ line and somatic cells, as a moral duty.


2020 ◽  
Vol 54 (5) ◽  
pp. 23-28
Author(s):  
E.V. Fomina ◽  
◽  
T.B. Kukoba ◽  

Testing of 25 cosmonauts showed that the amount of resistance training weight loading in long-term space mission influences dynamics of the leg-muscle strength and velocity recovery. On Earth, the loads equal from 70 to 130 % of the body mass is sufficient for keeping up endurance and maximum strength moments of shin and thigh muscles. In the group of cosmonauts who had not used the strength training device or chosen loads less than 30 % of the body mass the leg-muscle maximum strength and thigh endurance were decreased substantially on day 4 of return and all the more by day 15 back on Earth.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


Author(s):  
James R. Hodgson ◽  
Lee Chapman ◽  
Francis D. Pope

AbstractUrban air pollution can have negative short- and long-term impacts on health, including cardiovascular, neurological, immune system and developmental damage. The irritant qualities of pollutants such as ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM) can cause respiratory and cardiovascular distress, which can be heightened during physical activity and particularly so for those with respiratory conditions such as asthma. Previously, research has only examined marathon run outcomes or running under laboratory settings. This study focuses on elite 5-km athletes performing in international events at nine locations. Local meteorological and air quality data are used in conjunction with race performance metrics from the Diamond League Athletics series to determine the extent to which elite competitors are influenced during maximal sustained efforts in real-world conditions. The findings from this study suggest that local meteorological variables (temperature, wind speed and relative humidity) and air quality (ozone and particulate matter) have an impact on athletic performance. Variation between finishing times at different race locations can also be explained by the local meteorology and air quality conditions seen during races.


2021 ◽  
Vol 13 (9) ◽  
pp. 5000
Author(s):  
Iqbal Owadally ◽  
Jean-René Mwizere ◽  
Neema Kalidas ◽  
Kalyanie Murugesu ◽  
Muhammad Kashif

We consider whether sustainable investment can deliver performance comparable to conventional investment in investors’ long-term retirement plans. On the capital markets, sustainable investment can be achieved through various instruments and strategies, one of them being investment in mutual funds that subscribe to ESG (environmental, social, and governance) principles. First, we compare the investment performance of ESG funds with matched conventional funds over the period 1994–2020, in Europe and the U.S. We find no significant evidence of differing performance (at 5% level) despite using a number of investment performance metrics. Second, we perform a historical backtest to model a UK personal retirement plan from 2000 till 2020, taking full account of investment management fees and transaction costs. We find that investing in an index-tracker fund overlaid with ESG screening delivers a pension which is 10.4% larger than is achieved if the index-tracker fund is used without screening. This is also 20.2% larger than is achieved by investing in a collection of actively managed funds with a sustainable purpose. We conclude that an ESG-screened long-term passive investment approach for retirement plans is likely to be successful in satisfying the twin objectives of a secure retirement income and of sustainability.


Sign in / Sign up

Export Citation Format

Share Document