An Unconditional Test for Change Point Detection in Binary Sequences with Applications to Clinical Registries

2016 ◽  
Vol 55 (04) ◽  
pp. 367-372 ◽  
Author(s):  
Tim Friede ◽  
David Ellenberger

SummaryObjectives: Methods for change point (also sometimes referred to as threshold or breakpoint) detection in binary sequences are not new and were introduced as early as 1955. Much of the research in this area has focussed on asymptotic and exact conditional methods. Here we develop an exact unconditional test.Methods: An unconditional exact test is developed which assumes the total number of events as random instead of conditioning on the number of observed events. The new test is shown to be uniformly more powerful than Worsley’s exact conditional test and means for its efficient numerical calculations are given. Adaptions of methods by Berger andBoos are made to deal with the issue that the unknown event probability imposes a nuisance parameter. The methods are compared in a Monte Carlo simulation study and applied to a cohort of patients undergoing traumatic orthopaedic surgery involving external fixators where a change in pin site infections is investigated.Results: The unconditional test controls the type I error rate at the nominal level and is uniformly more powerful than (or to be more precise uniformly at least as powerful as) Worsley’s exact conditional test which is very conservative for small sample sizes. In the application a beneficial effect associated with the introduction of a new treatment procedure for pin site care could be revealed.Conclusions: We consider the new test an effective and easy to use exact test which is recommended in small sample size change point problems in binary sequences.

Author(s):  
Mehdi Moradi ◽  
Manuel Montesino-SanMartin ◽  
M. Dolores Ugarte ◽  
Ana F. Militino

AbstractWe propose an adaptive-sliding-window approach (LACPD) for the problem of change-point detection in a set of time-ordered observations. The proposed method is combined with sub-sampling techniques to compensate for the lack of enough data near the time series’ tails. Through a simulation study, we analyse its behaviour in the presence of an early/middle/late change-point in the mean, and compare its performance with some of the frequently used and recently developed change-point detection methods in terms of power, type I error probability, area under the ROC curves (AUC), absolute bias, variance, and root-mean-square error (RMSE). We conclude that LACPD outperforms other methods by maintaining a low type I error probability. Unlike some other methods, the performance of LACPD does not depend on the time index of change-points, and it generally has lower bias than other alternative methods. Moreover, in terms of variance and RMSE, it outperforms other methods when change-points are close to the time series’ tails, whereas it shows a similar (sometimes slightly poorer) performance as other methods when change-points are close to the middle of time series. Finally, we apply our proposal to two sets of real data: the well-known example of annual flow of the Nile river in Awsan, Egypt, from 1871 to 1970, and a novel remote sensing data application consisting of a 34-year time-series of satellite images of the Normalised Difference Vegetation Index in Wadi As-Sirham valley, Saudi Arabia, from 1986 to 2019. We conclude that LACPD shows a good performance in detecting the presence of a change as well as the time and magnitude of change in real conditions.


2020 ◽  
Author(s):  
Ibrar Ul Hassan Akhtar

UNSTRUCTURED Current research is an attempt to understand the CoVID-19 pandemic curve through statistical approach of probability density function with associated skewness and kurtosis measures, change point detection and polynomial fitting to estimate infected population along with 30 days projection. The pandemic curve has been explored for above average affected countries, six regions and global scale during 64 days of 22nd January to 24th March, 2020. The global cases infection as well as recovery rate curves remained in the ranged of 0 ‒ 9.89 and 0 ‒ 8.89%, respectively. The confirmed cases probability density curve is high positive skewed and leptokurtic with mean global infected daily population of 6620. The recovered cases showed bimodal positive skewed curve of leptokurtic type with daily recovery of 1708. The change point detection helped to understand the CoVID-19 curve in term of sudden change in term of mean or mean with variance. This pointed out disease curve is consist of three phases and last segment that varies in term of day lengths. The mean with variance based change detection is better in differentiating phases and associated segment length as compared to mean. Global infected population might rise in the range of 0.750 to 4.680 million by 24th April 2020, depending upon the pandemic curve progress beyond 24th March, 2020. Expected most affected countries will be USA, Italy, China, Spain, Germany, France, Switzerland, Iran and UK with at least infected population of over 0.100 million. Infected population polynomial projection errors remained in the range of -78.8 to 49.0%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexa Booras ◽  
Tanner Stevenson ◽  
Connor N. McCormack ◽  
Marie E. Rhoads ◽  
Timothy D. Hanks

AbstractIn order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.


Sign in / Sign up

Export Citation Format

Share Document