scholarly journals The Jurassic of North-East Greenland

2004 ◽  
Vol 5 ◽  
pp. 1-7 ◽  
Author(s):  
Lars Stemmerik

The Jurassic rift succession of East Greenland has been intensely studied over the last 25 years, particularly within the main outcrop areas of Jameson Land and Wollaston Forland. The more isolated and poorly known outcrops on Traill Ø, Hold with Hope, Hochstetter Forland and Store Koldewey were investigated in the late 1980s and mid-1990s in order to develop a better regional understanding of the Jurassic in eastern Greenland.This collection of seven papers focuses on stratigraphic and depositional aspects of the Jurassic at these localities. Comprehensive descriptions of the Jurassic on Hold with Hope and south-eastern Traill Ø are accompanied by papers covering fluvial deposits and new ammonite collections from the Middle Jurassic of Traill Ø. The bulletin is concluded by studies of the dinoflagellate cyst stratigraphy of the Middle and Upper Jurassic of Hold with Hope, Hochstetter Forland and Store Koldewey.

2004 ◽  
Vol 5 ◽  
pp. 73-88 ◽  
Author(s):  
Stefan Piasecki ◽  
Michael Larsen ◽  
Jens Therkelsen ◽  
Henrik Vosgerau

Dinoflagellate cysts of the Middle–Upper Jurassic succession on northern Hold with Hope have been studied in order to establish a biostratigraphic framework and to date the succession. The Pelion Formation is characterised by abundant Chytroeisphaeridia hyalina and Sentusidinium spp., with some Ctenidodinium thulium and Paragonyaulacysta retiphragmata in the lower part. Mendicodinium groenlandicum appears higher in the formation followed by Trichodinium scarburghense in the upper part. The succeeding Payer Dal Formation contains Scriniodinium crystallinum, Rigaudella aemula and Leptodinium subtile in the lower part and Dingodinium jurassicum and Prolixosphaeridium granulosum in the uppermost part. The Bernbjerg Formation contains abundant Sirmiodinium grossii and Gonyaulacysta jurassica. Adnatospahaeridium sp., Cribroperidinium granuligerum, Glossodinium cf. dimorphum and Scriniodinium irregulare appear in the lower part of the formation, followed by Avellodinium spp. in the highest part. The dinoflagellate cyst assemblages in the Pelion Formation indicate an Early–Late Callovian age (C. apertum – P. athleta Chronozones). This is supported by ammonites in the lower part of the formation, which refer to the C. apertum and P. koenigi Chronozones. A significant hiatus, from Late Callovian to Middle Oxfordian, is present between the Pelion Formation and the overlying Payer Dal Formation. The age of the Payer Dal Formation is Middle Oxfordian to earliest Late Oxfordian (C. tenuiserratum – A. glosense Chronozones). The Payer Dal Formation is conformably overlain by the Bernbjerg Formation of Late Oxfordian to possibly earliest Kimmeridgian age (A. glosense – P. baylei Chronozones). The A. glosense Chronozone is also documented by abundant ammonites in the lowermost part of the formation.


2004 ◽  
Vol 5 ◽  
pp. 99-112 ◽  
Author(s):  
Stefan Piasecki ◽  
John H. Callomon ◽  
Lars Stemmerik

The Jurassic of Store Koldewey comprises a Middle Jurassic succession towards the south and an Upper Jurassic succession towards the north. Both successions onlap crystalline basement and coarse sediments dominate. Three main lithostratigraphical units are recognised: the Pelion Formation, including the Spath Plateau Member, the Payer Dal Formation and the Bernbjerg Formation. Rich marine macrofaunas include Boreal ammonites and the successions are dated as Late Bathonian – Early Callovian and Late Oxfordian – Early Kimmeridgian on the basis of new collections combined with material in earlier collections. Fine-grained horizons and units have been analysed for dinoflagellate cysts and the stratigraphy of the diverse and well-preserved flora has been integrated with the Boreal ammonite stratigraphy. The dinoflagellate floras correlate with contemporaneous floras from Milne Land, Jameson Land and Hold with Hope farther to the south in East Greenland, and with Peary Land in North Greenland and Svalbard towards the north. The Middle Jurassic flora shows local variations in East Greenland whereas the Upper Jurassic flora gradually changes northwards in East Greenland. A Boreal flora occurs in Peary Land and Svalbard. The characteristic and stratigraphically important species Perisseiasphaeridium pannosum and Oligosphaeridium patulum have their northernmost occurrence on Store Koldewey, whereas Taeniophora iunctispina and Adnatosphaeridium sp. extend as far north as Peary Land. Assemblages of dinoflagellate cysts are used to characterise significant regional flooding events and extensive sequence stratigraphic units.


2004 ◽  
Vol 5 ◽  
pp. 31-49 ◽  
Author(s):  
Peter Alsen ◽  
Finn Surlyk

A Middle – lower Upper Jurassic sandstone-dominated succession, more than 550 m thick, with mudstone intercalations in the middle part is exposed in Bjørnedal on Traill Ø, North-East Greenland. A number of ammonite assemblages have been found, mainly in the mudstones. They indicate the presence of the Lower Callovian Cadoceras apertum and C. nordenskjoeldi Chronozones. The mudstones represent northern wedges of the Fossilbjerget Formation hitherto known only from Jameson Land to the south. In Bjørnedal they interfinger with sandstones of the Pelion and Olympen Formations. The presence of the Fossilbjerget Formation in this region indicates complete drowning of the Middle Jurassic sandstone-dominated Pelion Formation during maximum Middle Jurassic transgression. A new species, Kepplerites tenuifasciculatus, is described in the appendix by J.H. Callomon. The holotype and paratype are from Jameson Land, East Greenland, but the species is also found in Bjørnedal, Traill Ø, North-East Greenland.


2003 ◽  
Vol 1 ◽  
pp. 865-892 ◽  
Author(s):  
Per C. Alsgaard ◽  
Vince L. Felt ◽  
Henrik Vosgerau ◽  
Finn Surlyk

The Middle–Upper Jurassic succession of Kuhn Ø, North-East Greenland accumulated in a major half-graben and is an excellent analogue for the subsurface of the mid-Norwegian shelf. On Kuhn Ø, peneplaned crystalline basement was incised by a drainage system during a major base-level lowstand, probably in late Early or early Middle Jurassic times. It was filled with fluvial conglomerates of the newly defined Middle Jurassic Bastians Dal Formation during subsequent base-level rise. As sea level continued to rise, precursor-peat of the coals of the Muslingebjerg Formation formed in swamps which covered the conglomerates and filled the remaining space of the incised valley system. The valley and interfluve areas were flooded in Late Bathonian – Callovian times and tidally-dominated, shallow marine sandstones of the Pelion Formation were deposited on top of the valley fill and over the adjacent basement peneplain. These sandstones are overlain by the newly defined shallow marine Oxfordian Payer Dal Formation which is subdivided into a lower unit and an upper unit, separated by a major drowning surface. The Payer Dal Formation sands were flooded in the Late Jurassic and organic-rich, offshore mudstones of the Bernbjerg Formation were deposited. The Jurassic succession of Kuhn Ø can thus be subdivided into large-scale sedimentary units separated by major drowning surfaces. They are of regional extent, and in combination with biostratigraphic and 87Sr/86Sr isotope data they allow the correlation of the sedimentary units on Kuhn Ø with more offshore deposits to the south in Wollaston Forland and more landwards successions to the north in Hochstetter Forland. Petrographically, the trough cross-bedded sandstones of the Pelion Formation and the lower unit of the Payer Dal Formation include both calcite-cemented and poorly cemented quartz sandstones. The calcite cement was derived from dissolution of abundant calcareous fossils and forms concretionary horizons. The upper unit of the Payer Dal Formation mainly consists of weaklycemented quartz sandstones with porosities around 30%. The sandstones of the Pelion and Payer Dal Formations on Kuhn Ø are petrographically very similar to Jurassic sandstones from the mid- Norwegian shelf and the Barents Sea with regard to original mineralogical composition, sorting and grain size. The Bernbjerg Formation mudstones are comparable to the Upper Jurassic source rock of the mid-Norwegian shelf and the Barents Sea, but have lower hydrogen index (HI) values due to terrigenous input in a relatively proximal setting. Coals of the Muslingebjerg Formation have significant source rock potential with measured HI values up to 700, kerogen types II–III and total organic carbon (TOC) values above 50%.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


1994 ◽  
Vol 160 ◽  
pp. 68-72
Author(s):  
H Nøhr-Hansen

As part of studies of the onshore hydrocarbon potential in East Greenland undertaken by the Geological Survey of Greenland (GGU), a project was initiated with the purpose of describing the dinoflagellate cyst stratigraphy of the Lower Cretaceous succession in East Greenland (72°76°N) and correlating the exposed sections throughout the region (Nøhr-Hansen, 1993). Based on the rather sporadic occurrence of macrofossils the Lower Cretaceous sediments of East Greenland was previously dated as Aptian to Albian (Spath, 1946; Maync, 1949; Donovan, 1953, 1955, 1957). Maync (1949) reported the total exposed thickness of the ‘Aptian-Albian series’ to be more than 2000 m, whereas Surlyk (1990) noted that the Lower Cretaceous shale succession reached a cumulative thickness or 1000 m. Furthermore, Donovan (1972) reported that Hauterivian and Barremian sediments were unknown in East Greenland. Dinoflagellate cysts recorded from 40 sections throughout the region have now dated the Lower Cretaceous sequence as Barremian to Albian, and correlation of sections yields a cumulative thickness of approximately 1500m (Nøhr-Hansen, 1993).


2010 ◽  
Vol 84 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Marie-Céline Buchy

From the Middle Jurassic on, the Tethys basin opened westward; the existence of a Carribean corridor linking the European and Pacific realms now appears well supported by comparison of marine reptile assemblages (e.g., Gasparini and Fernández, 1997, 2005; Gasparini et al., 2000; Fernández and Iturralde-Vinent, 2000; Gasparini and Iturralde-Vinent, 2001, 2006; Gasparini et al., 2002). Marine transgression in Mexico began during the Callovian, as evidenced by the evaporites of the Minas Viejas Fm. However, microfossils and invertebrate assemblages indicate that the Mexican Gulf remained isolated from both the European Archipelago and the Pacific, at least temporarily, until the middle Berriasian; the Florida uplift and southward movement of Yucatan were proposed as possibly forming a barrier (Salvador et al., 1993; Adatte et al., 1994, 1996; Goldhammer, 1999; Goldhammer and Johnston, 2001; Gasparini and Iturralde-Vinent, 2006). After almost a decade of field work and examination of collections, the Late Jurassic marine reptile assemblage of north-east Mexico confirms the conclusions drawn from microfossils and invertebrates. Poorly diagnostic ichthyosaur remains, with various thalattosuchians, numerically dominate the assemblage. Sauropterygians are rare, mainly represented by large pliosaurids of unclear affinities, a few vertebrae attributed to elasmosaurids, and a unique cryptoclidid. Turtles are yet to be reported (Frey et al., 2002; Buchy et al., 2003, 2005b, 2006a–d; Buchy, 2007, 2008a, b; material currently under study).


1990 ◽  
Vol 148 ◽  
pp. 123-126
Author(s):  
L Stemmerik ◽  
S Piasecki

Post-Caledonian sediments in North-East Greenland between 76° and 78° 30´N are, with the exception of an outlier near Kulhøj, restricted to Store Koldewey. The sediments on Store Koldewey, believed to span the Middle Jurassic to Lower Cretaceous (Callovian to Aptian), are dominated by fine-grained sand and silt. They contain a rich macrofauna which, together with material collected for microfloral investigations, will form the basis for a detailed stratigraphy and dating of the sequence.


Author(s):  
Jørgen A. Bojesen-Koefoed ◽  
Morten Bjerager ◽  
H. Peter Nytoft ◽  
Henrik I. Petersen ◽  
Stefan Piasecki ◽  
...  

The marine, mudstone-dominated Hareelv Formation (Upper Jurassic) of Jameson Land, East Greenland is a representative of the widespread Kimmeridge Clay Formation equivalents, sensu lato, known from the greater North Atlantic region, western Siberia and basins off eastern Canada. These deposits constitute the most important petroleum source-rock succession of the region. The present study reports petroleum geochemical data from the 233.8 m thick succession penetrated by the fully cored Blokelv-1 borehole, and includes supplementary data from outcrop samples and other boreholes in Jameson Land. The succession consists of basinal mudstone intercalated with a significant proportion of gravity-flow sandstones, both in situ and remobilised as injectites. The mudstones are generally rich in organic carbon with values of TOC reaching nearly 19 wt% and high pyrolysis yields reaching values of S2 up to nearly 43 kg HC/ton. Hydrogen Indices are up to 363. The data presented herein demonstrate that weathering of abundant pyritic sulfur adversely affects the petroleum potential of the kerogen in outcrop samples. The succession is thermally immature to early mature, except where intrusions have locally heated adjacent mudstones. The documentation of rich gas/oil-prone Upper Jurassic successions in Jameson Land is important for the assessment of the regional petroleum potential, including the North-East Greenland continental shelf.


Author(s):  
Jørgen A. Bojesen-Koefoed

This bulletin presents a series of nine papers dealing with the succession of Upper Jurassic – Lower Cretaceous sedimentary rocks penetrated by the fully cored Blokelv-1 borehole, drilled in western Jameson Land, central East Greenland in August 2008. The borehole was drilled as the first of three boreholes that in combination were designed to provide full coverage of the Upper Jurassic – Lower Cretaceous petroleum source-rock succession in eastern Greenland. The remaining two boreholes, Rødryggen-1 and Brorson Halvø-1, were drilled on Wollaston Forland in 2009 and 2010, respectively, and the results from these boreholes will be published in a companion volume. The objectives of the drilling campaign were fulfilled, demonstrating that continuous sedimentation of oil-prone petroleum source rocks took place in eastern Greenland over a period of c. 13 million years from the Oxfordian to the Ryazanian, with the Blokelv-1 succession representing the older, Oxfordian–Volgian part of this interval. The drilling campaign was carried out as one of a number of projects within the framework of a multi-client collaborative programme between GEUS and a long list of petroleum companies entitled Petroleum Geological Studies, Services and Data in East and Northeast Greenland. This collaboration was initiated in 2007 and is ongoing at the time of writing with more than 20 participant companies, a subset of which sponsored the studies presented herein; for contractual reasons, these companies cannot be named. The GEUS–industry collaboration was initiated in recognition of the need for new and better data on many aspects of the petroleum geology of eastern Greenland prior to an anticipated licensing round of offshore North-East Greenland. The Circum-Arctic Resource Appraisal (CARA), undertaken by the United States Geological Survey (USGS), also played an important role in defining the priorities of the collaborative agreement by directing attention towards specific subjects in need of investigation. Licensing rounds in 2012 and 2013 resulted in the award of five licences. Based on the results of these activities in eastern Greenland, a large number of scientific papers have been published since 2008, and more are expected as confidentiality clauses expire. This volume is, however, the first GEUS Bulletin to be published as a direct consequence of the GEUS–industry collaboration.


Sign in / Sign up

Export Citation Format

Share Document