scholarly journals The New rT - X Family of Distributions: Some Properties with Applications

Author(s):  
Clement Boateng Ampadu ◽  
Abdulzeid Yen Anafo

The rT - X family of distributions induced by V which have been introduced in [1] is further explored in this paper. In particular, we have obtained some basic mathematical properties of this new family. The simulation study shows the method of maximum likelihood is adequate in estimating the unknown parameters in sub-models of this new class of statistical distributions. Further, the application shows that sub-models of this new family of distributions are useful in material science engineering and related disciplines that call for modeling and forecasting of related data sets. Finally, inspired by the Ampadu-G family of distributions [2], we propose a new class of distributions that have never appeared in the literature, and ask the reader to investigate some properties and applications of this new class of distributions.

2019 ◽  
Vol 42 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Ronaldo Silva ◽  
Frank Gomes-Silva ◽  
Manoel Ramos ◽  
Gauss Moutinho Cordeiro ◽  
Pedro Marinho ◽  
...  

We propose a new family of distributions called the exponentiated Kumaraswamy-G class with three extra positive parameters, which generalizes the Cordeiro and de Castro's family. Some special distributions in the new class are discussed. We derive some mathematical properties of the proposed class including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, mean deviations, reliability, Rényi entropy and Shannon entropy. The method of maximum likelihood is used to fit the distributions in the proposed class. Simulations are performed in order to assess the asymptotic behavior of the maximum likelihood estimates. We illustrate its potentiality with applications to two real data sets which show that the extended Weibull model in the new class provides a better fit than other generalized Weibull distributions.


Author(s):  
Sule Ibrahim ◽  
Sani Ibrahim Doguwa ◽  
Isah Audu ◽  
Jibril Haruna Muhammad

We proposed a new family of distributions called the Topp Leone exponentiated-G family of distributions with two extra positive shape parameters, which generalizes and also extends the Topp Leone-G family of distributions. We derived some mathematical properties of the proposed family including explicit expressions for the quantile function, ordinary and incomplete moments, generating function and reliability. Some sub-models in the new family were discussed. The method of maximum likelihood was used to estimate the parameters of the sub-model. Further, the potentiality of the family was illustrated by fitting two real data sets to the mentioned sub-models.


2018 ◽  
Vol 47 (4) ◽  
pp. 60-80 ◽  
Author(s):  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
Ahmed Z. Afify ◽  
Gauss M. Cordeiro ◽  
M. Mansoor

We introduce a new class of continuous distributions called the complementary generalized transmuted Poisson-G family, which extends the transmuted class pioneered by Shaw and Buckley (2007). We provide some special models and derive general mathematical properties including quantile function, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies and order statistics. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the new family is illustrated by means of two applications to real data sets.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-23
Author(s):  
Maha A. D. Aldahlan ◽  
Mohamed G. Khalil ◽  
Ahmed Z. Afify

A new class of continuous distributions called the generalized Burr X-G family is introduced. Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the quantile and generating functions, ordinary and incomplete moments, order statistics and Rényi entropy are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1801
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Ibrahim Elbatal ◽  
Christophe Chesneau ◽  
Farrukh Jamal

This paper is devoted to a new class of distributions called the Box-Cox gamma-G family. It is a natural generalization of the useful Ristić–Balakrishnan-G family of distributions, containing a wide variety of power gamma-G distributions, including the odd gamma-G distributions. The key tool for this generalization is the use of the Box-Cox transformation involving a tuning power parameter. Diverse mathematical properties of interest are derived. Then a specific member with three parameters based on the half-Cauchy distribution is studied and considered as a statistical model. The method of maximum likelihood is used to estimate the related parameters, along with a simulation study illustrating the theoretical convergence of the estimators. Finally, two different real datasets are analyzed to show the fitting power of the new model compared to other appropriate models.


2019 ◽  
Vol 15 (4) ◽  
pp. 849
Author(s):  
Hesham Reyad‎ ◽  
Mahmoud Ali Selim ◽  
Soha Othman

Based on the Nadarajah Haghighi distribution and the Topp Leone-G family in view of the T-X family, we introduce a new generator of continuous distributions with three extra parameters called the Nadarajah Haghighi Topp Leone-G family. Three sub-models of the new class are discussed. Main mathematical properties of the new family are investigated such as; quantile function, raw and incomplete moments, Bonferroni and Lorenz curves, moment and probability generating functions, stress-strength model, Shanon and Rényi entropies, order statistics and probability weighted moments. The model parameters of the new family is estimated by using the method of maximum likelihood and the observed information matrix is also obtained. We introduce two real applications to show the importance of the new family.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Gokarna R. Aryal ◽  
Haitham M. Yousof

AbstractIn this article we propose and study a new family of distributions which is defined by using the genesis of the truncated Poisson distribution and the exponentiated generalized-G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability and Shannon entropy are derived. Estimation of the parameters using the method of maximum likelihood is discussed. Although this generalization technique can be used to generalize many other distributions, in this study we present only two special models. The importance and flexibility of the new family is exemplified using real world data.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G. G. Hamedani

We propose a new generator of univariate continuous distributions with two extra parameters called the transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by Gomes-Silva et al. [1]. Some mathematical properties of the new generator such as, the ordinary and incomplete moments, generating function, stress strength model, Rényi entropy, probability weighted moments and order statistics are investigated. Certain characterisations of the proposed family are estimated. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. The potentiality of the new family is illustrated by means of five applications to real data sets.  


Author(s):  
Haitham Yousof ◽  
Muhammad Mansoor ◽  
Morad Alizadeh ◽  
Ahmed Afify ◽  
Indranil Ghosh

We study a new family of distributions defined by the minimum of the Poissonrandom number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of theproposed family.


Sign in / Sign up

Export Citation Format

Share Document