scholarly journals Remote bed-level change and overwash observation with low-cost ultrasonic distance sensors

Shore & Beach ◽  
2021 ◽  
pp. 23-30
Author(s):  
Ian Reeves ◽  
Evan Goldstein ◽  
Katherine Anarde ◽  
Laura Moore

Few datasets exist of high-frequency, in situ measurements of storm overwash, an essential mechanism for the subaerial maintenance of barrier islands and spits. Here we describe a new sensor platform for measuring bed-level change and estimating overwash inundation depths. Our MeOw (Measuring Overwash) stations consist of two ultrasonic distance sensors, a microprocessor board, and a camera and are capable of withstanding the impacts of large storm events, can be left unattended to collect data for months to years, and are relatively inexpensive. With the exception of the camera, the MeOw stations are built with all open-source hardware and software. Herein we provide complete instructions for manufacturing the MeOw stations and present observations from a single MeOw station for a three-month (2019) deployment on a frequently overwashed section of Smith Island, VA. The MeOw stations captured three large storm events over the course of the deployment (Hurricane Dorian, Tropical Storm Melissa, and a November nor’easter), as well as several high-tide events. Based on our interpretation of the raw data, bed-level changes occurred throughout the deployment from both storm and non-storm overwash, but were particularly large during Tropical Storm Melissa where initial accretion of approximately 0.15 m was followed by 0.77 m of erosion over three days. The maximum overwash inundation depth occurred during the nor’easter and measured approximately 0.83 m. The variability in bed level over the course of our experiment highlights the importance of in situ high frequency bed-level measurements for constraining overwash inundation depths. MeOw stations are ideally suited for measuring storm overwash — or any process that necessitates tracking bed and water level elevations at high frequency during harsh conditions.

2021 ◽  
Author(s):  
Ian Reeves ◽  
Evan Goldstein ◽  
Katherine Anarde ◽  
Laura Moore

Few datasets exist of high-frequency, in situ measurements of storm overwash, an essential mechanism for the subaerial maintenance of barrier islands and spits. Here we describe a new sensor platform for measuring bed-level change and estimating overwash inundation depths. Our MeOw (Measuring Overwash) stations consist of two ultrasonic distance sensors, a microprocessor board, and a camera and are capable of withstanding the impacts of large storm events, can be left unattended to collect data for months to years, and are relatively inexpensive. With the exception of the camera, the MeOw stations are built with all open-source hardware and software. Herein we provide complete instructions for manufacturing the MeOw stations and present observations from a single MeOw station for a three-month (2019) deployment on a frequently overwashed section of Smith Island, VA. The MeOw stations captured three large storm events over the course of the deployment (Hurricane Dorian, Tropical Storm Melissa, and a November nor’easter), as well as several high-tide events. Based on our interpretation of the raw data, bed-level changes occurred throughout the deployment from both storm and non-storm overwash, but were particularly large during Tropical Storm Melissa where initial accretion of approximately 0.15 m was followed by 0.77 m of erosion over three days. The maximum overwash inundation depth occurred during the nor’easter and measured approximately 0.83 m. The variability in bed level over the course of our experiment highlights the importance of in situ high frequency bed-level measurements for constraining overwash inundation depths. MeOw stations are ideally suited for measuring storm overwash — or any process that necessitates tracking bed and water level elevations at high frequency during harsh conditions.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 727-732
Author(s):  
Uğur Çavdar ◽  
İ. Murat Kusoglu ◽  
Ayberk Altintas

Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Shore & Beach ◽  
2019 ◽  
pp. 3-14 ◽  
Author(s):  
Joshua Davis ◽  
Diana Mitsova ◽  
Tynon Briggs ◽  
Tiffany Briggs

Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


Sign in / Sign up

Export Citation Format

Share Document