To Eliminate Curtain Effect of FIB TEM Samples by a Combination of Sample Dicing and Backside Milling

Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.

2013 ◽  
Vol 19 (4) ◽  
pp. 1080-1091 ◽  
Author(s):  
Felipe Rivera ◽  
Robert Davis ◽  
Richard Vanfleet

AbstractTransmission electron microscopy (TEM) and focused ion beam (FIB) are proven tools to produce site-specific samples in which to study devices from initial processing to causes for failure, as well as investigating the quality, defects, interface layers, etc. However, the use of polymer substrates presents new challenges, in the preparation of suitable site-specific TEM samples, which include sample warping, heating, charging, and melting. In addition to current options that address some of these problems such as cryo FIB, we add an alternative method and FIB sample geometry that address these challenges and produce viable samples suitable for TEM elemental analysis. The key feature to this approach is a larger than usual lift-out block into which small viewing windows are thinned. Significant largely unthinned regions of the block are left between and at the base of the thinned windows. These large unthinned regions supply structural support and thermal reservoirs during the thinning process. As proof-of-concept of this sample preparation method, we also present TEM elemental analysis of various thin metallic films deposited on patterned polycarbonate, lacquer, and poly-di-methyl-siloxane substrates where the pattern (from low- to high-aspect ratio) is preserved.


Author(s):  
R.J. Young ◽  
A. Buxbaum ◽  
B. Peterson ◽  
R. Schampers

Abstract Scanning transmission electron microscopy with scanning electron microscopes (SEM-STEM) has become increasing used in both SEM and dual-beam focused ion beam (FIB)-SEM systems. This paper describes modeling undertaken to simulate the contrast seen in such images. Such modeling provides the ability to help understand and optimize imaging conditions and also support improved sample preparation techniques.


2012 ◽  
Vol 531-532 ◽  
pp. 592-595
Author(s):  
Yi Qing Chen ◽  
Feng Zai Tang ◽  
Liang Chi Zhang

This paper reports the specimen preparation using an advanced dual beam focused ion beam (FIB) technique for bulk polycrystalline diamond (PCD) composites after dynamic friction polishing (DFP). The technique adapted allows for precisely processing diamond materials at the specific polishing track sites of PCD surface, from which large cross-sectional specimens for SEM/EDS/Raman microanalysis could be successfully created. In addition, an in-situ lift-out method was developed to prepare the site-specific HRTEM specimens which were thin enough for imaging the atomic lattice of diamond and for conducting EELS analysis.


Author(s):  
Richard J. Young ◽  
Michael P. Bernas ◽  
Mary V. Moore ◽  
Young-Chung Wang ◽  
Jay P. Jordan ◽  
...  

Abstract The dual-beam system, which combines a high-resolution scanning electron microscope (SEM) with a focused ion beam (FIB), allows sample preparation, imaging, and analysis to be accomplished in a single tool. This paper discusses how scanning transmission electron microscopy (STEM) with the electron beam enhances the analysis capabilities of the dualbeam. In particular, it shows how, using the combination of in-situ sample preparation and integrated SEM-STEM imaging, more failure analysis and characterization problems can be solved in the dual-beam without needing to use the Ångstrom-level capabilities of the transmission electron microscope (TEM).


Author(s):  
Hagit Barda ◽  
Irina Geppert ◽  
Avraham Raz ◽  
Rémy Berthier

Abstract An experimental setup is presented, that allows in-situ Transition Electron Microscopy (TEM) investigation of void formation and growth within fully embedded interconnect structure, as a response to an external bias. A special TEM holder is employed to perform in-situ I-V measurements across the Via, simultaneously monitoring the morphological and chemical changes surrounding the void. This work presents in detail a Focused Ion Beam (FIB) based sample preparation method that allows the analysis of a Cu single Via structure found in the advanced microelectronic 14nm FinFET technology, as well as preliminary TEM observations.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


2016 ◽  
Vol 850 ◽  
pp. 722-727 ◽  
Author(s):  
Hui Wang ◽  
Shang Gang Xiao ◽  
Qiang Xu ◽  
Tao Zhang ◽  
Henny Zandbergen

The preparation of thin lamellas by focused ion beam (FIB) for MEMS-based in situ TEM experiments is time consuming. Typically, the lamellas are of ~5μm*10μm and have a thickness less than 100nm. Here we demonstrate a fast lamellas’ preparation method using special fast cutting by FIB of samples prepared by conventional TEM sample preparation by argon ion milling or electrochemical polishing methods. This method has been applied successfully on various materials, such as ductile metallic alloy Ti68Ta27Al5, brittle ceramics K0.5Na0.5NbO3-6%LiNbO3 and semiconductor Si. The thickness of the lamellas depends on the original TEM sample.


2021 ◽  
Author(s):  
Tony Colpaert ◽  
Stefaan Verleye

Abstract Frontside die inspection by Scanning Electron Microscopy (SEM) is critical to investigate failures that appear dispersed over the GaN die surface and that will be very difficult to localize by the typical Focus Ion Beam (FIB) or Transmission Electron Microscopy (TEM) analysis. Frontside sample preparation is; however, extremely challenging if the device was already subjected to sample preparation for backside Photo Emission Microscopy (PEM). In this paper, a novel sample preparation method is presented where all front side layers are removed and only the 5μm GaN die is left for inspection.


Author(s):  
Julie Schuchman ◽  
Julie Willis

Abstract This paper deals primarily with the difficulties and solutions to scanning transmission electron microscope (STEM) sample preparation by dual beam focused ion beam. Approximately twenty major challenges were encountered spanning hardware, software, and material sample preparation. The main focus is upon the variety of challenges which are encountered in trying to implement automated STEM and TEM sample fabrication with minimal operator input and the engineering solutions implemented to overcome these challenges. The automated STEM script has evolved significantly from the first generation attempt and is described in more detail in this paper. The mechanical, software, and materials challenges encountered are also presented. The paper highlights a mechanical issue with the ion aperture motor mechanism, which required extensive troubleshooting to fully diagnose and correct. A long standing software routine had to be modified to fully enable script automation by extending the beam dwell time of the automatic brightness contrast routine.


Sign in / Sign up

Export Citation Format

Share Document