scholarly journals Quad-band FSS for Electromagnetic Shielding

2021 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Alka Singh ◽  
Chitra Singh

In this paper, a novel method to design Quad-band stop frequency selective surface (FSS) is proposed to shield medical/non-medical devices from electromagnetic radiation of wifi/Bluetooth, GPS,1G, 2G, 3G, 4G and 5G frequencies. The proposed device can also be used in security and surveillance devices to protect them from electromagnetic attack. The FSS unit cell consists of convoluted structures on FR4 substrate. The study was performed by designing individual frequency selective surfaces for 1G, 2G, Wi-Fi/Bluetooth, GPS, 4G and 5G, then combining it to form a single Quad-band FSS unit.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.


2020 ◽  
Vol 62 (6) ◽  
pp. 2785-2792
Author(s):  
Mohsen Koohestani ◽  
Richard Perdriau ◽  
Mohamed Ramdani ◽  
Jan Carlsson

2014 ◽  
Vol 1049-1050 ◽  
pp. 790-793
Author(s):  
Yan Xin Yu ◽  
Chun Yang Wang ◽  
Yan Jun Sun ◽  
Wen Ting Jiang

Frequency selective surface (FSS) is a two-dimensional periodic structure. It exhibits total reflection and transmission in the neighborhood of the element resonances. As it performs as a filter, FSS is widely used in the fields of microwave and optics. In this paper, the finite element method is used to analysis frequency selective surface and study on the feasibility of Ansoft HFSS software for frequency selective surface simulation. Hexagonal element of frequency selective surface is as an example to explore the simulation method and the process of Ansoft HFSS. Through the comparison of the simulation curves and the measured curves of hexagonal element frequency selective surface film by photoetching technology, the simulation method of Ansoft HFSS software for frequency selective surface is correct. At the same time, this paper further verified the reliability of the simulation through the example of the ring and the cross unit structure.


2015 ◽  
Vol 16 (2) ◽  
pp. 281
Author(s):  
Tariq Rahim ◽  
Jiodong Xu

A low profile multi layer miniaturized unit cell frequency selective surface (FSS) with second-order band-pass response is design. The metallic layers in the form of capacitive patches and inductive grids are separated by dielectric substrates. The non-resonant sub-wavelength unit cells with unit cell dimensions and periodicities on the order of 0.15λ. The overall thickness of approximately 0.03λ is designed which is useful at lower frequencies with long wavelengths. The FSS exhibit a stable frequency response to different angles of incidence and polarizations. The analysis and synthesis of the FSS is done using equivalent circuit method and simulated using CST microwave studio at X-band.


Sign in / Sign up

Export Citation Format

Share Document