Molecular Interaction Studies in Ternary Liquid Mixtures Containing 2-Nitroanisole and 1- Pentanol in n- Hexane at Different Temperatures using Ultrasonic Techniques

2019 ◽  
Vol 1 (3) ◽  
pp. 8-15
Author(s):  
Edward Jeyakumar J ◽  
Chidambara Vinayagam S ◽  
Senthil Murugan J ◽  
Syed Ibrahim P.S

The experimental values of ultrasonic velocity, density and viscosity have been measured for the ternary liquid mixtures containing 2-Nitroanisole and 1-Pentanol in n-Hexane at 303,308 and 313K. To calculate various acoustical parameters like adiabatic compressibility, free volume, internal pressure, acoustical impedance, adsorption co-efficient and molecular interaction parameters have been computed using the experimental data. The linearity of variation in ultrasonic velocity and other parameters are due to the molecular interaction between donor acceptor molecules in liquid-liquid mixture. The various molecular interactions like dipole-dipole, dipole-induced dipole, induced-induced dipole have been discussed for the liquid mixture containing 2-Nitroanisone, 1-Pentanol in n-Hexane at different temperatures and concentration.

Author(s):  
G. Pavan Kumar ◽  
Ch. Praveen Babu ◽  
K. Samatha ◽  
A.N. Jyosthna ◽  
K. Showrilu

Ultrasonic velocities (U), densities (ρ), and coefficient of viscosities (η) are measured for binary mixtures containing (i) p-chlorotoluene and (ii) benzene at 303.15 K, 308.15 K, 313.15 K and 318.15 K to understand the molecular interaction. Various acoustical parameters such as adiabatic compressibility (βad), free length (Lf), acoustic impedance (Z), free volume (Vf), molar volume (Vm), Rao’s constant (R), Wada’s constant (W) and internal pressure (πi), are calculated from the measured values of U, ρ, and η. The trend in acoustical parameters also substantiates to asses strong molecular interactions.


Author(s):  
N. Santhi ◽  
P.L. Sabarathinam ◽  
G. Alamelumangai ◽  
J. Madhumitha ◽  
M. Emayavaramban

Ultrasonic velocity, viscosity and density of alcohol[s] in n-hexane have been measured at various temperatures in the range of 303.15 - 318.15K. From the experimental data, the acoustical parameters such as molar volume, adiabatic compressibility, intermolecular free length and their excess values have been computed and presented as functions of compositions. The deviations from ideality of the acoustical parameters are explained on the basis of molecular interactions between the components of the mixtures. The variations of these parameters with composition of the mixture suggest the strength of interactions in these mixtures.


2010 ◽  
Vol 7 (s1) ◽  
pp. S217-S222
Author(s):  
S. Thirumaran ◽  
T. Alli ◽  
D. Priya ◽  
A. Selvi

The ultrasonic velocity, density and viscosity have been measured for the mixtures of 1-alkanols such as 1-propanol and 1-butanol withN-Ndimethylformamide (DMF) at 303 K. The experimental data have been used to calculate the acoustical parameters namely adiabatic compressibility (β), free length (Lf), free volume (Vf) and internal pressure (πi). The excess values of the above parameters are also evaluated and discussed in the light of molecular interaction existing in the mixtures. It is obvious that there is a formation of hydrogen bonding between DMF and 1-alkanols. Further, the addition of DMF causes dissociation of hydrogen bonded structure of 1-alkanols. The evaluated excess values confirm that the molecular association is more pronounced in system-II comparing to the system-I.


2009 ◽  
Vol 6 (4) ◽  
pp. 1150-1152 ◽  
Author(s):  
R. Uvarani ◽  
J. Sivapragasam

Molecular interaction studies using ultrasonic technique in the binary liquid mixtures of cyclohexanone witho-cresol andp-cresol have been carried out at 303 K. Using the measured values of ultrasonic velocity, density and viscosity, acoustical parameters and their excess values are evaluated. From the properties of these excess parameters the nature and strength of the interactions in these binary systems are discussed.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


Author(s):  
A.B. Naik

Density, ultrasonic velocity of pure solvent, dimethylformamide (DMF) and ligand solutions of substituted thiazoles in DMF-water mixture were measured at different temperatures (303.15, 308.15, 313.15 and 318.15) K. Acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustical impedance and relative association were determined from experimental data of density and ultrasonic velocity. The effect of temperature variations on the strength of molecular interaction has also been studied. An excellent correlation represents in terms of solute-solvent and solvent-solvent interaction at all temperatures.


2011 ◽  
Vol 8 (3) ◽  
pp. 977-981
Author(s):  
CH. Srinivasu ◽  
K. Narendra ◽  
CH. Kalpana

Theoretical velocities of binary liquid mixtures of anisaldehyde with toluene at 303.15, 308.15, 313.15 and 318.15 K have been evaluated by using theoretical models of liquid mixtures such as Nomoto, Van Dael-Vangeel, Schaff’s collision factor theory and Junjie’s relations. Density and ultrasonic velocity of these mixtures have also been measured as a function of concentration and temperature and the experimental values are compared with the theoretical values. A good agreement has been found between experimental and Nomoto’s theoretical ultrasonic velocities. The results are explained in terms of intermolecular interactions occurring in these binary liquid mixtures.


2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


Author(s):  
B. Sudhamsa ◽  
M. Sarath Babu ◽  
K. Narendra

The speed of sound and density in binary liquid mixture of diethyl carbonate + benzonitrile, + benzaldehyde have been determined at temperatures 298.15, 308.15 and 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess intermolecular free length (LfE), excess speed of sound (uE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures.


Author(s):  
S.S.J. Srinivas ◽  
B. Tulasi Koteswari Bai ◽  
K. Babu Rao ◽  
K. Narendra ◽  
M. Sarath Babu

The densities, viscosities and ultrasonic velocities of binary liquid mixtures of Isopropyl alcohol with acetophenone and methyl isobutyl ketone (MIBK) have been measured at temperatures 298.15 and 308.15 K over the entire range of mole fraction. From these data, acoustical parameters such as adiabatic compressibility (β), free volume (Vf) and free length (Lf) have been estimated using the standard relations. The results are interpreted in terms of molecular interactions present in the mixtures.


Sign in / Sign up

Export Citation Format

Share Document