METHOD FOR CALCULATING A TWO-MIRROR ANTENNA OF THE GREGORY TYPE

Author(s):  
А.М. СОМОВ ◽  
Р.В. КАБЕТОВ

Предложен способ расчета двухзеркальной антенны Грегори, отличающийся введением виртуального дополнительного облучателя для повышения точности расчетов шумовой температуры. Приведен пример расчета антенны. A method for calculating a two-mirror Gregory antenna is proposed. The method is characterized by the introduction of a virtual additional irradiator to increase the accuracy of noise temperature calculations. An example of the antenna calculation is given.

2020 ◽  
Vol 29 (5) ◽  
pp. 058505
Author(s):  
Kang-Min Zhou ◽  
Wei Miao ◽  
Yue Geng ◽  
Yan Delorme ◽  
Wen Zhang ◽  
...  

1984 ◽  
Vol 108 ◽  
pp. 395-396
Author(s):  
K. Rohlfs ◽  
J. Kreitschmann ◽  
J. V. Feitzinger

The measurements were made in Feb. 1982 with the Parkes 64 m telescope using a corrugated waveguide horn with total half-power beam width of 15′, the first sidelobes being 19 dB down, resulting in an aperture efficiency ηA=0.53±0.007, a main beam efficiency of ηmb=0.80±0.005 and a ratio of source flux to antenna temperature of Γ=0.62±0.1 K/Jy (Murray, priv. comm.). A cooled two channel FET frontend used in the frequency switching mode with Δν = 2 MHz resulted in a system noise temperature at zenith of Tsyst = 40 K for one channel and Tsyst = 50 K for the other. Each frontend channel received a single polarization mode, and this radiation was then further analysed in a 2 × 512 channel autocorrelation spectrometer set at a channel separation of 3.906 KHz corresponding to a velocity resolution of V = 0.824 km s−1. Hanning smoothed this resulted in a σT = 0.05 K for the average of both polarization.


Metrologia ◽  
2012 ◽  
Vol 49 (4) ◽  
pp. 538-551 ◽  
Author(s):  
Alejandro Díaz-Morcillo ◽  
Antonio Lozano-Guerrero ◽  
Jaime Fornet-Ruiz ◽  
Juan Monzó-Cabrera

2011 ◽  
Vol 4 (9) ◽  
pp. 1979-1994 ◽  
Author(s):  
C. Straub ◽  
A. Murk ◽  
N. Kämpfer ◽  
S. H. W. Golchert ◽  
G. Hochschild ◽  
...  

Abstract. This paper presents the Alpine Radiometer Intercomparison at the Schneefernerhaus (ARIS), which took place in winter 2009 at the high altitude station at the Zugspitze, Germany (47.42° N, 10.98° E, 2650 m). This campaign was the first direct intercomparison between three new ground based 22 GHz water vapor radiometers for middle atmospheric profiling with the following instruments participating: MIRA 5 (Karlsruhe Institute of Technology), cWASPAM3 (Max Planck Institute for Solar System Research, Katlenburg-Lindau) and MIAWARA-C (Institute of Applied Physics, University of Bern). Even though the three radiometers all measure middle atmospheric water vapor using the same rotational transition line and similar fundamental set-ups, there are major differences between the front ends, the back ends, the calibration concepts and the profile retrieval. The spectrum comparison shows that all three radiometers measure spectra without severe baseline artifacts and that the measurements are in good general agreement. The measurement noise shows good agreement to the values theoretically expected from the radiometer noise formula. At the same time the comparison of the noise levels shows that there is room for instrumental and calibration improvement, emphasizing the importance of low elevation angles for the observation, a low receiver noise temperature and an efficient calibration scheme. The comparisons of the retrieved profiles show that the agreement between the profiles of MIAWARA-C and cWASPAM3 with the ones of MLS is better than 0.3 ppmv (6%) at all altitudes. MIRA 5 has a dry bias of approximately 0.5 ppm (8%) below 0.1 hPa with respect to all other instruments. The profiles of cWASPAM3 and MIAWARA-C could not be directly compared because the vertical region of overlap was too small. The comparison of the time series at different altitude levels show a similar evolution of the H2O volume mixing ratio (VMR) for the ground based instruments as well as the space borne sensor MLS.


Author(s):  
Eric W. Bryerton ◽  
Xiaobing Mei ◽  
Young-Min Kim ◽  
William Deal ◽  
Wayne Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document