scholarly journals On the possibility of upgrading the composition of cable PVC compound

2021 ◽  
pp. 7-10
Author(s):  
T. A. Borukaev ◽  
A. Kh. Malamatov ◽  
A. Kh. Salamov

Upgrade of the composition of cable PVC-compound grade I40-13A with aluminum hydroxide has been carried out. Fire resistance, thermophysical and physical-mechanical properties of the obtained compounds have been investigated. It is shown that the modernization of the composition of cable PVC compound with aluminum hydroxide enables production of a fi re-resistant compound. It was found that aluminum hydroxide significantly changes the thermophysical properties of cable plastic compound. In particular, heat generation and smoke generation during plastic compound combustion are significantly reduced. It has been established that the physical-mechanical and rheological characteristics of the cable compound modernized with aluminum hydroxide remain at the level of the original compound. The optimal amount of aluminum hydroxide for the modernization of cable plastic compound of the I40-13A grade is 10–15 wt.%.

2020 ◽  
Vol 2020 (2) ◽  
pp. 64-69
Author(s):  
I Khaidarov ◽  
◽  
R Ismailov

This article presents studies of fire resistance in the treatment of expanded vermiculite, which depends on the size of the dispersed particles and the orientation of the granules, their moisture and temperature. It has been studied that one of the interesting and important in practice properties of vermiculite is its ability to swell and turn into a lightweight effective material for imparting fire resistance. The properties and compositions of vermiculite from the Tebinbulak deposit are studied, from which a flame-retardant suspension is prepared for processing textile materials based on vermiculite dissolved in orthophosphoric acid and alkali in an aqueous medium. When modifying materials with developed flame-retardant suspensions, it is possible to obtain fire-resistant textile materials that meet the requirements of GOST for fire resistance, smoke generation and other physical and mechanical properties.


2021 ◽  
Vol 899 ◽  
pp. 557-562
Author(s):  
Timur A. Borukaev ◽  
Luiza I. Kitieva ◽  
Abubekir Kh. Shaov ◽  
A.A. Kyarov

Based on magnesium carbonate and antimony oxide (V), MgO•Sb2O5 was obtained. In the formulation of fire-resistant cable PVC-plasticate, antimony (III) oxide was replaced by MgO•Sb2O5 and the fire resistance and physical and mechanical properties of the resulting compound were investigated. It is shown that the replacement of antimony (III) oxide in the composition of PVC cable compound MgO•Sb2O5 leads to the production of a compound that is not inferior in its characteristics to the original plastic compound. In particular, the fire resistance of cable PVC-plasticate, standard industrial formulation and with the obtained MgO•Sb2O5, is practically the same (OI=32%). It has been established that the physical and mechanical characteristics of the cable compound, when replacing antimony oxide (III) with MgO•Sb2O5 in the formulation, remain at the level of the original compound, while MgO×Sb2O5 will have a less negative impact on the environment.


Author(s):  
Xin Zhang ◽  
Cheng Liu ◽  
Xinxin Zhang ◽  
Yang Si ◽  
Jianyong Yu ◽  
...  

Advanced ceramic aerogels with ultra-strong mechanical properties and excellent fire resistance are critically required as heat insulators under extreme conditions. Nevertheless, the current use of ceramic aerogels is usually restricted...


2019 ◽  
Vol 220 ◽  
pp. 547-564 ◽  
Author(s):  
Salmabanu Luhar ◽  
Ta-Wui Cheng ◽  
Demetris Nicolaides ◽  
Ismail Luhar ◽  
Dimitris Panias ◽  
...  

2005 ◽  
Vol 13 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Zhanpai Su ◽  
Pingkai Jiang ◽  
Qiang Li ◽  
Ping Wei ◽  
Yong Zhang

The flame retardant and mechanical properties of polypropylene (PP), highly filled with aluminum hydroxide (Al(OH)3) and toughened with ethylene propylene diene monomer (EPDM) and zinc neutralized sulfated EPDM ionomer (Zn-S-EPDM), were studied along with their morphology. The PP matrix when highly filled with Al(OH)3 particles can achieve an adequate level of flame retardancy, but there is a decrease in the mechanical properties because of inadequate adhesion between the Al(OH)3 particles and the PP matrix and the strong tendency of the filler to agglomerate. The rubber incorporated in the PP/Al(OH)3 composites has two roles: as compatibilizer and toughening agent. Although ordinary EPDM significantly improves the Izod impact strength of the composites, the tensile properties are much worse because of the weak interfacial adhesion between the modifier and the matrix. Using Zn-S-EPDM instead EPDM, the tensile properties are much improved with only a slight decrease in toughness, because of improvements in the interfacial adhesion between modifier and matrix. SEM micrographs show that the rubber phase is dispersed in the continuous PP matrix and that most Al(OH)3 particles are uniformly distributed in the rubbery phase. Larger, obviously rubbery, domains can be seen in the PP/EPDM/Al(OH)3 ternary composites. Much finer rubbery domains were found in the PP/Zn-S-EPDM/Al(OH)3 composites.


Sign in / Sign up

Export Citation Format

Share Document