scholarly journals The Immortal Science of Dead Water: Effects of Internal Wave Drag on Propagating Submerged Bodies

2019 ◽  
Vol 07 (01) ◽  
Author(s):  
Marco Danieletto ◽  
Justin M Brown ◽  
Timour Radko
2016 ◽  
Vol 46 (5) ◽  
pp. 1399-1419 ◽  
Author(s):  
Maarten C. Buijsman ◽  
Joseph K. Ansong ◽  
Brian K. Arbic ◽  
James G. Richman ◽  
Jay F. Shriver ◽  
...  

AbstractThe effects of a parameterized linear internal wave drag on the semidiurnal barotropic and baroclinic energetics of a realistically forced, three-dimensional global ocean model are analyzed. Although the main purpose of the parameterization is to improve the surface tides, it also influences the internal tides. The relatively coarse resolution of the model of ~8 km only permits the generation and propagation of the first three vertical modes. Hence, this wave drag parameterization represents the energy conversion to and the subsequent breaking of the unresolved high modes. The total tidal energy input and the spatial distribution of the barotropic energy loss agree with the Ocean Topography Experiment (TOPEX)/Poseidon (TPXO) tidal inversion model. The wave drag overestimates the high-mode conversion at ocean ridges as measured against regional high-resolution models. The wave drag also damps the low-mode internal tides as they propagate away from their generation sites. Hence, it can be considered a scattering parameterization, causing more than 50% of the deep-water dissipation of the internal tides. In the near field, most of the baroclinic dissipation is attributed to viscous and numerical dissipation. The far-field decay of the simulated internal tides is in agreement with satellite altimetry and falls within the broad range of Argo-inferred dissipation rates. In the simulation, about 12% of the semidiurnal internal tide energy generated in deep water reaches the continental margins.


2016 ◽  
Vol 803 ◽  
pp. 436-465 ◽  
Author(s):  
John Grue ◽  
Daniel Bourgault ◽  
Peter S. Galbraith

Supercritical ship internal wave wakes with $Fr=U/c_{0}\sim 4{-}12$ (where $U$ is the ship speed and $c_{0}$ is the linear internal long-wave speed) are calculated by a strongly nonlinear two-layer model in three dimensions, accounting for the complex ship geometry, and compared with field measurements. The degree of nonlinearity, defined by the ship draught ($d_{0}$) to average depth of pycnocline ($h_{0}$) ratio, is explored in the range $d_{0}/h_{0}\sim 0.1{-}1.2$, comparing nonlinear and linear calculations. For $d_{0}/h_{0}\sim 1$, the wave amplitude far downstream is overpredicted by up to 50 % by the linear method. The nonlinear trough amplitudes decay algebraically in the lateral coordinate with decay exponents in the range 0.16–0.61. The nonlinear leading trough is systematically somewhat ahead of the classical asymptotic pattern, and its amplitude and forerunning slope are appreciable, while the linear counterparts are very small. The calculated and asymptotic patterns are close for large $Fr$. Field measurements in a Canadian fjord of the internal wave wake of a 221 m long cargo ship of dead weight 43 000 tonnes moving at $Fr=6.6$ document a series of waves of 1–2 m isopycnal displacements at an off-track distance of 700 m. The nonlinear computations of a similar ship predict a wave train of height 1.5 m at a similar position, matching the field observation, whereas linear calculations give a wave train of height 2.3 m. Two- and three-layer theoretical models predict speeds that match the observed speeds of the second and third wave troughs. The observed leading signature of the diverging wave wake is moving at supercritical speed. This may be explained by the position and speed of the nonlinear wave slope moving ahead of the leading trough. Nonlinear computations of the surface velocity and strain rate compare well with measurements in the Loch Linnhe experiment of Watson et al. (J. Geophys. Res., vol. 97 (C6), 1992, pp. 9689–9703). The calculated nonlinear wave resistance of the observed cargo ship is comparable to the frictional force for $Fr\sim 4{-}6$, exceeds the surface wave resistance and increases the total drag by 40 %. A linear force prediction is useless when $d_{0}/h_{0}\sim 1$. The results show that nonlinearity of the dead water wake depends on the relative ship volume as well as the relative ship draught, with the pycnocline depth as the relevant length scale.


2017 ◽  
Vol 47 (6) ◽  
pp. 1403-1412 ◽  
Author(s):  
Carsten Eden ◽  
Dirk Olbers

AbstractA novel concept for parameterizing internal wave–mean flow interaction in ocean circulation models is extended to an arbitrary two-dimensional flow with vertical shear. The concept is based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation integrated in wavenumber space. Energy compartments result for the horizontal direction of wave propagation as additional prognostic model variables, of which only four are taken here for simplicity. The mean flow is interpreted as residual velocities with respect to the wave activity. The effect of wave drag and energy exchange due to the vertical shear of the residual mean flow is then given simply by a vertical flux of momentum. This flux is related to the asymmetries in upward, downward, alongflow, and counterflow wave propagation described by the energy compartments. A numerical implementation in a realistic eddying ocean model shows that the wave drag effect is a significant sink of kinetic energy in the interior ocean.


2008 ◽  
Vol 134 (630) ◽  
pp. 11-19 ◽  
Author(s):  
M. A. C. Teixeira ◽  
Branko Grisogono

2018 ◽  
Vol 854 ◽  
pp. 121-145 ◽  
Author(s):  
S. Das ◽  
T. Sahoo ◽  
M. H. Meylan

Flexural-gravity wave characteristics are analysed, in the presence of a compressive force and a two-layer fluid, under the assumption of linearized water wave theory and small amplitude structural response. The occurrence of blocking for flexural-gravity waves is demonstrated in both the surface and internal modes. Within the threshold of the blocking and the buckling limit, the dispersion relation possesses four positive roots (for fixed wavenumber). It is shown that, under certain conditions, the phase and group velocities coalesce. Moreover, a wavenumber range for certain critical values of compression and depth is provided within which the internal wave energy moves faster than that of the surface wave. It is also demonstrated that, for shallow water, the wave frequencies in the surface and internal modes will never coalesce. It is established that the phase speed in the surface and internal modes attains a minimum and maximum, respectively, when the interface is located approximately in the middle of the water depth. An analogue of the dead water phenomenon, the occurrence of a high amplitude internal wave with a low amplitude at the surface, is established, irrespective of water depth, when the densities of the two fluids are close to each other. When the interface becomes close to the seabed, the dead water effect ceases to exist. The theory developed in the frequency domain is extended to the time domain and examples of negative energy waves and blocking are presented.


1993 ◽  
Vol 115 (2) ◽  
pp. 105-110 ◽  
Author(s):  
T. Miloh ◽  
M. P. Tulin ◽  
G. Zilman

A linearized theory is presented for the dead-water phenomena. A two-layer fluid model of finite depth is assumed and the solutions for both the wave resistance, as well as the interface and free-surface disturbances, are obtained in terms of Green’s function. Numerical solutions are given for the case of a semi-submersible slender-body (prolate spheroid) moving steadily on the free-surface.


2015 ◽  
Vol 85 ◽  
pp. 42-55 ◽  
Author(s):  
M.C. Buijsman ◽  
B.K. Arbic ◽  
J.A.M. Green ◽  
R.W. Helber ◽  
J.G. Richman ◽  
...  

2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Karim Medjdoub ◽  
Imre M. Jánosi ◽  
Miklós Vincze

Abstract Interfacial internal wave excitation in the wake of towed ships is studied experimentally in a quasi-two-layer fluid. At a critical ‘resonant’ towing velocity, whose value depends on the structure of the vertical density profile, the amplitude of the internal wave train following the ship reaches a maximum, in unison with the development of a drag force acting on the vessel, known in the maritime literature as ‘dead water’. The amplitudes and wavelengths of the emerging internal waves are evaluated for various ship speeds, ship lengths and stratification profiles. The results are compared to linear two- and three-layer theories of freely propagating waves and lee waves. We find that despite the fact that the observed internal waves can have considerable amplitudes, linear theories can still provide a surprisingly adequate description of subcritical-to-supercritical transition and the associated amplification of internal waves. We argue that the latter can be interpreted as a coalescence of frequencies of two fundamental stable wave motions, namely lee waves and propagating interfacial wave modes. Graphic abstract


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Mehdi Esmaeilpour ◽  
J. Ezequiel Martin ◽  
Pablo M. Carrica

The dead water problem, in which under certain conditions a vessel advancing in a stratified fluid experiences a considerable increase in resistance respect to the equivalent case without stratification, was studied using computational fluid dynamics (CFD). The advance of a vessel in presence of a density interface (pycnocline) results in the generation of an internal wave that in the most adverse conditions can increase the total resistance coefficient by almost an order of magnitude. This paper analyses the effects of stratification on total and friction resistance, the near field wake, internal and free surface waves, and resistance dynamics. Some of these effects are reported for the first time, as limitations of previous efforts using potential flow are overcome by the use of a viscous, free surface CFD solver. A range of densimetric Froude numbers from subcritical to supercritical are evaluated changing both the ship speed and pycnocline depth, using as platform the research vessel athena. It was found that the presence of the internal wave causes a favorable pressure gradient, acceleration of the flow in the downstream of the hull, resulting in thinning of the boundary layer and increases of the friction resistance coefficient of up to 30%. The total resistance presents an unstable region that results in a hysteretic behavior, though the characteristic time to establish the speed–resistance curve, dominated by the formation of the internal waves, is very long and unlikely to cause problems in modern ship speed controllers.


2013 ◽  
Vol 43 (3) ◽  
pp. 647-668 ◽  
Author(s):  
Alberto C. Naveira Garabato ◽  
A. J. George Nurser ◽  
Robert B. Scott ◽  
John A. Goff

Abstract The impact of small-scale topography on the ocean’s dynamical balance is investigated by quantifying the rates at which internal wave drag extracts (angular) momentum and vorticity from the general circulation. The calculation exploits the recent advent of two near-global descriptions of topographic roughness on horizontal scales on the order of 1–10 km, which play a central role in the generation of internal lee waves by geostrophic flows impinging on topography and have been hitherto unresolved by bathymetric datasets and ocean general circulation models alike. It is found that, while internal wave drag is a minor contributor to the ocean’s dynamical balance over much of the globe, it is a significant player in the dynamics of extensive areas of the ocean, most notably the Antarctic Circumpolar Current and several regions of enhanced small-scale topographic variance in the equatorial and Southern Hemisphere oceans. There, the contribution of internal wave drag to the ocean’s (angular) momentum and vorticity balances is generally on the order of ten to a few tens of percent of the dominant source and sink terms in each dynamical budget, which are respectively associated with wind forcing and form drag by topography with horizontal scales from 500 to 1000 km. It is thus suggested that the representation of internal wave drag in general circulation models may lead to significant changes in the deep ocean circulation of those regions. A theoretical scaling is derived that captures the basic dependence of internal wave drag on topographic roughness and near-bottom flow speed for most oceanographically relevant regimes.


Sign in / Sign up

Export Citation Format

Share Document